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Abstract. Ultrasound (US) is a critical modality for diagnosing liver
fibrosis. Unfortunately, assessment is very subjective, motivating auto-
mated approaches. We introduce a principled deep convolutional neural
network (CNN) workflow that incorporates several innovations. First,
to avoid overfitting on non-relevant image features, we force the net-
work to focus on a clinical region of interest (ROI), encompassing the
liver parenchyma and upper border. Second, we introduce global hetero-
image fusion (GHIF), which allows the CNN to fuse features from any
arbitrary number of images in a study, increasing its versatility and flexi-
bility. Finally, we use “style”-based view-specific parameterization (VSP)
to tailor the CNN processing for different viewpoints of the liver, while
keeping the majority of parameters the same across views. Experiments
on a dataset of 610 patient studies (6979 images) demonstrate that our
pipeline can contribute roughly 7% and 22% improvements in partial
area under the curve and recall at 90% precision, respectively, over con-
ventional classifiers, validating our approach to this crucial problem.

Keywords: View Fusion · Ultrasound · Liver Fibrosis · Computer-Aided
Diagnosis.

1 Introduction

Liver fibrosis is a major health threat with high prevalence [19]. Without timely
diagnosis and treatment, liver fibrosis can develop into liver cirrhosis [19] and
even hepatocellular carcinoma [21]. While histopathology remains the gold stan-
dard, non-invasive approaches minimize patient discomfort and danger. Elas-
tography is a useful non-invasive modality, but it is not always available or
affordable and it can be confounded by inflammation, presence of steatosis, and
the patient’s etiology [23,2,12]. Assessment using conventional ultrasound (US)
may be potentially more versatile; however, it is a subjective measurement that
can suffer from insufficient sensitivities, specificities, and high inter- and intra-
rater variability [15,13]. Thus, there is great impetus for an automated and less
subjective assessment of liver fibrosis. This is the goal of our work.

ar
X

iv
:2

00
8.

03
35

2v
1 

 [
ee

ss
.I

V
] 

 7
 A

ug
 2

02
0



2 B.Li et al.

Although a relatively understudied topic, prior work has advanced auto-
mated US fibrosis assessment [17,4,18,16,14]. In terms of deep convolutional
neural networks (CNNs), Meng et al. [16] proposed a straightforward liver fi-
brosis parenchyma VGG-16-based [22] classifier and tested it on a small dataset
of 279 images. Importantly, they only performed image-wise predictions and do
not report a method for study-wise classification. On the other hand, Liu et
al. [14] correctly identified the value in fusing features from all US images in a
study when making a prediction. However, their algorithm requires exactly 10
images. But, real patient studies may contain any arbitrary number of US scans.
Their feature concatenation approach would also drastically increase computa-
tional and memory costs as more images are incorporated. Moreover, they rely
on 13 manually labeled indicators as ancillary supervision, which are typically
not available without considerable labor costs. Finally, their system treats all
US images identically, even though a study consists of different viewpoints of
the liver, each of which may have its own set of clinical markers correlating with
fibrosis. Ideally, a liver fibrosis assessment system could learn directly from su-
pervisory signals already present in hospital archives, i.e., image-level fibrosis
scores produced during daily clinical routines. In addition, a versatile system
should also be able to effectively use all US images/views in a patient study
with no ballooning of computational costs, regardless of their number.

We fill these gaps by proposing a robust and versatile pipeline for conven-
tional ultrasound liver fibrosis assessment. Like others, we use a deep CNN, but
with key innovations. First, informed by clinical practice [1], we ensure the net-
work focuses only on a clinically-important region of interest (ROI), i.e., the liver
parenchyma and the upper liver border. This prevents the CNN from erroneously
overfitting on spurious or background features. Second, inspired by hetero-modal
image segmentation (HeMIS) [6], we adapt and expand on this approach and
propose global hetero-image fusion (GHIF) as a way to learn from, and perform
inference on, any arbitrary number of US scans within a study. While GHIF
share similarities with deep feature-based multi-instance learning [10], there are
two important distinctions: (1) GHIF includes variance as part of the fusion,
as per HeMIS [6]; (2) GHIF is trained using arbitrary image combinations from
a patient study, which is possible because, unlike multi-instance learning, each
image (or instance) is strongly supervised by the same label. We are the first to
propose and develop this mechanism to fuse global CNN feature vectors. Finally,
we implement a view-specific parameterization (VSP) that tailors the CNN pro-
cessing based on 6 common liver US views. While the majority of processing
is shared, each view possesses its own set of so-called “style”-based normaliza-
tion parameters [9] to customize the analysis. While others have used similar
ideas segmenting different anatomical structures [8], we are the first to apply
this concept for clinical decision support and the first to use it in concert with a
hetero-image fusion mechanism. The result is a highly robust and practical liver
fibrosis assessment solution.

To validate our approach, we use a cross-validated dataset of 610 US pa-
tient studies, comprising 6976 images. We measure the ability to identify pa-
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Fig. 1. Algorithmic workflow depicting the clinical ROI pooling, GHIF, and VSP. We
use plate notation to depict the repeated workflow across the K images in a US study.

tients with moderate to severe liver fibrosis. Compared to strong classification
baselines, our enhancements are able to improve recall at 90% precision by 22%,
with commensurate boosts in partial areas under the curve (AUCs). Importantly,
ablation studies demonstrate that each component contributes to these perfor-
mance improvements, demonstrating that our liver fibrosis assessment pipeline,
and its constituent clinical ROI, GHIF, and VSP parts, represents a significant
advancement for this important task.

2 Methods

We assume we are given a dataset, D = {Xi, yi}Ni=1, comprised of US patient
studies and ground-truth labels indicating liver fibrosis status, dropping the i
when convenient. Each study Xi, in turn, is comprised of an arbitrary number
of Ki 2D conventional US scans of the patient’s liver, Xi = {X1 . . .XKi}. Fig. 1
depicts the workflow of our automated liver assessment tool, which combines
clinical ROI pooling, GHIF, and VSP.

2.1 Clinical ROI Pooling

We use a deep CNN as backbone for our pipeline. Popular deep CNNs, e.g.,
ResNet [7], can be formulated with the following convention:

ŷk = f
(
g
(
Ak

)
; w

)
, (1)

Ak = h
(
Xk; θ

)
, (2)

where h(.; θ) is a fully-convolutional network (FCN) feature extractor parame-
terized by θ, Ak is the FCN output, g(.) is some global pooling function, e.g.,
average pooling, and f(.; w) is a fully-connected layer (and sigmoid function)
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(a) US Image (b) Liver Mask (c) Clinical ROI

Fig. 2. (a) depicts an US image, whose liver mask is rendered in (b). As shown in (c),
the clinical ROI the mask is extended upward to cover the top liver border.

parameterized by w. When multiple US scans are present, a standard approach
is to aggregate individual image-wise predictions, e.g., taking the median:

ŷ = median({ŷ1 . . . ŷK}). (3)

This conventional approach may have drawbacks, as it is possible for the
CNN to overfit to spurious background variations. However, based on clinical
practice [1], we know a priori that certain features are crucial for assessing liver
fibrosis, e.g., the parenchyma texture and surface nodularity. As Fig. 2 demon-
strates, to make the CNN focus on these features we use a masking technique.
We first generate a liver mask for each US scan. This is done by training a simple
segmentation network on a small subset of the images. Then, for each scan, we
create a rectangle that just covers the top half of and 10 pixels above the liver
mask, to ensure the liver border is covered. The resulting binary mask is denoted
M. Because we only need to ensure we capture enough of the liver parenchyma
and upper border to extract meaningful features, M need not be perfect.

With a clinical ROI obtained, we formulate the pooling function in (1) as a
masked version of global average pooling:

g(A; M) = GAP(M�A), (4)

where � and GAP(.) denote the element-wise product and global average pool-
ing, respectively. Interestingly, we found that including the zeroed-out regions
within the global average pooling benefits performance [3,25]. We posit their
inclusion helps implicitly capture liver size characteristics, which is another im-
portant clinical US marker for liver fibrosis [1].

2.2 Global Hetero-Image Fusion

A challenge with US patient studies is that they may consist of a variable number
of images, each of a potentially different view. Ideally, all available US images
would contribute to the final prediction. In (3) this is accomplished via a late
fusion of independent and image-specific predictions. But, this does not allow
the CNN integrate the combined features across US images. A better approach
would fuse these features. The challenge, here, is to allow for an arbitrary number
of US images in order to ensure flexibility and practicality.
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The HeMIS approach [6] to segmentation offers a promising strategy that
fuses features from arbitrary numbers of images using their first- and second-
order moments. However, HeMIS fuses convolutional features early in its FCN
pipeline, which is possible because it assumes pixel-to-pixel correspondence across
images. This is completely violated for US images. Instead, only global US fea-
tures can be sensibly fused together, which we accomplish through global hetero-
image fusion (GHIF). More formally, we use A = {Ak}Kk=1 and M = {Mk}Kk=1

to denote the set of FCN features and clinical ROIs, respectively, for each image.
Then GHIF modifies (1) to accept any arbitrary set of FCN features to produce
a study-wise prediction:

ŷ = f (g (A;M) ; w) , (5)

g(A;M) = concat (mean(G), var(G),max(G)) , (6)

G = {GAP(Mk �Ak)}Kk=1, (7)

Besides the first- and second-order moments, GHIF (6) also incorporates the
max operator as a powerful hetero-fusion function [26]. All three operators can
accept any arbitrary numbers of samples to produce one fused feature vector.
To the best of our knowledge, we are the first to apply hetero-fusion for global
feature vectors. The difference, compared to late fusion, is that features, rather
than predictions are fused. Rather than always inputting all US scans when
training, an important strategy is choosing random combinations of the K scans
for every epoch. This provides a form of data augmentation and allows the CNN
to learn from image signals that may be suppressed otherwise. An important
implementation note is that training with random combinations of images can
make GHIF’s batch statistics unstable. For this reason, a normalization not
relying on batch statistics, such as instance-normalization [24], should be used.

2.3 View-Specific Parameterization

While GHIF can effectively integrate arbitrary numbers of US images within a
study, it uses the same FCN feature extractor across all images, treating them all
identically. Yet, there are certain US features, such as vascular markers, that are
specific to particular views. As a result, some manner of view-specific analysis
could help push performance further. In fact, based on guidance from our clinical
partner, US views of the liver can be roughly divided into 6 categories, which
focus on different regions of the liver. These are shown in Fig 3.

A naive solution would be to use a dedicated deep CNN for each view cate-
gory. However, this would drastically reduce the training set for each dedicated
CNN and would sextuple the number of parameters, computation, and memory
consumption. Intuitively, there should be a great deal of analysis that is com-
mon across US views. The challenge is to retain this shared analysis, while also
providing some tailored processing for each category.

To do this, we adapt the concept of “style” parameters to implement a view-
specific parameterization (VSP) appropriate for US-based fibrosis assessment.
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Fig. 3. Liver views in our dataset. Blue square: position of the US probe. Liver cartoons
adapted from the DataBase Center for Life Science (https://commons.wikimedia.
org/wiki/File:201405_liver.png), licensed under the Creative Commons Attribu-
tion 4.0 International

Such parameters refer to the affine normalization parameters used in batch- [11]
or instance-normalization [24]. If these are switched out, while keeping all other
parameters constant, one can alter the behavior of the CNN in quite dramatic
ways [9,8]. For our purposes, retaining view-specific normalization parameters
allows for the majority of parameters and processing to be shared across views.
VSP is then realized with a minimal number of additional parameters.

More formally, if we create 6 sets of normalization parameters for an FCN,
we can denote them as Ω = {ω1 . . . ω6}. The FCN from (2) is then modified to
be parameterized also by Ω:

Ak = h
(
Xk; θ, ωvk

)
, (8)

where vk indexes each image by its view and θ now excludes the normalization
parameters. VSP relies on identifying the view of each US scan in order to swap
in the correct normalization parameters. This can be recorded as part of the
acquisition process. Or, if this is not possible, we have found classifying the US
views automatically to be quite reliable.

3 Experiments

Dataset. We test our system on a dataset of 610 US patient studies collected
from the Chang Gung Memorial Hospital in Taiwan, acquired from Siemens,
Philips, and Toshiba devices. The dataset comprises 232 patients, among which
95 (40.95%) patients have moderate to severe fibrosis (27 with severe liver steato-
sis). All patients were diagnosed with hepatitis B. Patients were scanned up to 3
times, using a different scanner type each time. Each patient study is composed
of up to 14 US images, corresponding to the views in Fig. 3. The total number of
images is 6 979. We use 5-fold cross validation, splitting each fold at the patient
level into 70%, 20%, and 10%, for training, testing, and validation, respectively.
We also manually labeled liver contours from 300 randomly chosen US images.

Implementation Details and Comparisons. Experiments evaluated our
workflow against several strong classification baselines, where throughout we

https://commons.wikimedia.org/wiki/File:201405_liver.png
https://commons.wikimedia.org/wiki/File:201405_liver.png
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Table 1. Ablation Studies

Method Partial AUC AUC R@P90 R@P85 R@P80

ResNet50 0.710 0.893 41.0% 61.7% 74.6%

Clinical ROI 0.744 0.908 46.1% 59.2% 82.1%

Global Fusion 0.591 0.845 30.2% 36.0% 49.8%

GHIF 0.691 0.885 36.7% 41.0% 65.0%

GHIF (I-Norm) 0.762 0.907 57.1% 71.1% 80.6%

GHIF + VSP (I-Norm) 0.783 0.913 63.4% 78.3% 84.2%

use the same ResNet50 [7] backbone (pretrained on ImageNet [5]). For methods
using the clinical ROI pooling of (4), we use a truncated version of ResNet (only
the first three layer blocks) for h(.) in (2). This keeps enough spatial resolution
prior to the masking in (4). We call this truncated backbone “ResNet-3”. To
create the clinical ROI, we train a simple 2D U-Net [20] on the 300 images
with masks. For training, we perform standard data augmenation with random
brightness, contrast, rotations, and scale adjustments. We use the stochastic
gradient descent optimizer and a learning rate of 0.001 to train all networks.

For baselines that can output only image-wise predictions, we test against a
conventional ResNet50 and also a ResNet-3 with clinical ROI pooling. For these
two approaches, following clinical practices, we take the median value across the
image-wise predictions to produce a study-wise prediction. All subsequent study-
wise baselines are then built off the ResNet-3 with clinical ROI pooling. We first
test the global feature fusion of (6), but only train the ResNet-3 with all available
images in a US study. In this way, it follows the spirit of Liu et al.’s global fusion
strategy [14]. To reveal the impact of our hetero-fusion training strategy that uses
different random combinations of US images per epoch, we also test two GHIF
variants, one using batch-normalization and one using instance-normalization.
The latter helps measure the importance of using proper normalization strategies
to manage the instability of GHIF’s batch statistics. Finally, we test our proposed
model which incorporates VSP on top of GHIF and clinical ROI pooling.

Evaluation Protocols. The problem setup is binary classification, i.e., iden-
tifying patients with moderate to severe liver fibrosis, which are the patient co-
horts requiring intervention. While we report full AUCs, we primarily focus on
operating points within a useful range of specificity or precision. Thus, we eval-
uate using partial AUCs that only consider false positive rates within 0 to 30%
because higher values lose their practical usefulness. Partial AUCs are normal-
ized to be within a range of 0 to 1. We also report recalls at a range of precision
points (R@P90, R@P85, R@P80) to reveal the achievable sensitivity at high pre-
cision points. We report mean values and mean graphs across all cross-validation
folds.

Results. Tab. 1 presents our AUC, partial AUC and recall values, whereas
Fig. 4 graphs the partial receiver operating characteristics (ROCs). Several con-
clusions can be drawn. First, clinical ROI pooling produces significant boosts in
performance, validating our strategy of forcing the network to focus on impor-
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ResNet (AUC=0.710 ± 0.024)
Clinical ROI (AUC=0.744 ± 0.020)
Global Fusion (AUC=0.591 ± 0.065)
GHIF (AUC=0.691 ± 0.026)
GHIF (I-Norm) (AUC=0.762 ± 0.010)
GHIF+VSP (I-Norm) (AUC=0.783 ± 0.015)

Fig. 4. Partial ROC curves are graphed, with corresponding partial AUCs found in
the legend. Partial AUC scores have been normalized to range from 0− 1. Both ROCs
and AUCs correspond to mean measures taken across the cross-validation folds.

tant regions of the image. Second, not surprisingly, global fusion without training
with random combinations of images, performs very poorly, as only presenting all
study images during training severely limits the data size and variability, hand-
icapping the model. For instance, compared to variants that train on individual
images, global fusion effectively reduces the training size by about a factor of
10 in our dataset. In contrast, the GHIF variants, which train with the combi-
natorial number of random combinations of images, not only avoids drastically
reducing the training set size, but can effectively increase it. Importantly, as the
table demonstrates, using an appropriate choice of instance normalization is cru-
cial in achieving good performance with GHIF. Although not shown, switching
to instance normalization did not improve performance for the image-wise or
global fusion models. The boosts in GHIF performance is apparent in the par-
tial AUC and recalls at high precision points, underscoring the need to analyze
results at appropriate operating points. Finally, adding the VSP provides even
further performance improvements, particularly in R@P80-R@P90 values, which
see a roughly 4 − 7% increase over GHIF alone. This indicates that VSP can
significantly enhance the recall at the very demanding precision points necessary
for clinical use. In total, compared to a conventional classifier, the enhancements
we articulate contribute to roughly 8% improvements in partial AUCs and 22%
in R@P90 values. Table 1 of our supplementary material also presents AUCs
when only choosing to input one particular view in the model during inference.
We note that performance is highest when all views are inputted into the model,
indicating that our pipeline is able to usefully exploit the information across
views. Our supplementary also includes liver segmentation results and success
and failure cases for our system.
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4 Conclusion

We presented a principled and effective pipeline for liver fibrosis characteriza-
tion from US studies, proposing several innovations: (1) clinical ROI pooling
to discourage the network from focusing on spurious image features; (2) GHIF
to manage any arbitrary number of images in the US study in both training
and inference; and (3) VSP to tailor the analysis based on the liver view being
presented using “style”-based parameters. In particular, we are the first to pro-
pose a deep global hetero-fusion approach and the first to combine it with VSP.
Experiments demonstrate that our system can produce gains in partial AUC
and R@P90 of roughly 7% and 22%, respectively on a dataset of 610 patient
studies. Future work should expand to other liver diseases and more explicitly
incorporate other clinical markers, such as absolute or relative liver lobe sizing.
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