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Abstract. Semantic tool segmentation in surgical videos is important
for surgical scene understanding and computer-assisted interventions as
well as for the development of robotic automation. The problem is chal-
lenging because different illumination conditions, bleeding, smoke and
occlusions can reduce algorithm robustness. At present labelled data for
training deep learning models is still lacking for semantic surgical instru-
ment segmentation and in this paper we show that it may be possible
to use robot kinematic data coupled with laparoscopic images to allevi-
ate the labelling problem. We propose a new deep learning based model
for parallel processing of both laparoscopic and simulation images for
robust segmentation of surgical tools. Due to the lack of laparoscopic
frames annotated with both segmentation ground truth and kinematic
information a new custom dataset was generated using the da Vinci Re-
search Kit (dVRK) and is made available.

Keywords: Instrument detection and segmentation - Surgical vision -
Computer assisted interventions

1 Introduction

Robotic minimally invasive surgery is now an established surgical paradigm
across different surgical specialties [I§]. While the mechanical design and imple-
mentation of surgical robots can support automation and advanced features for
surgical navigation and imaging, significant effort is still needed to automatically
understand and infer information from the surgical site for computer assistance.
Semantic segmentation of the surgical video into regions showing instruments
and tissue is a fundamental building block for such understanding [T5/T3] and to
pose estimation for robotic control [IJ6] and surgical action recognition [23].
The most effective semantic segmentation approaches for surgical instru-
ments have used deep learning and Fully Convolutional Neural Networks (FC-
NNs) [§]. Various architectures have been reported including novel encoder-
decoders using established pre-trained feature extractors or adding attention
fusion modules in the decoding part of the network [T4UT7]. These have dramat-
ically improved algorithm performance compared to early methods [2]. More
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recently, robotic systems articles have also reported the coupling of visual in-
formation with kinematic data [22] and the possibility of using kinematic infor-
mation to produce surgical tools segmentation ground truth [4]. In their work,
da Costa Rocha et al. [4] employed a Grabcut-based cost function to iteratively
estimate the optimal pose of the kinematic model in order to produce accurate
segmentation labels through tool’s model projection on the image plane. The
major weakness of this method is its strong dependence to an accurate initial
pose of the tool, that is not trivial in the surgical scenario. A similar approach
was attempted by Qin et al. [19]: their method is based on a particle filter op-
timization that repeatedly updates the pose of the tool to match the silhouette
projection of the surgical tool with a vision-based segmentation mask obtained
using a ToolNet [8]. However, this procedure heavily rely on optical markers
and on a navigation system for initial tool pose estimation. Moreover, the proce-
dure has been proposed only for non-articulated rigid tools, that limits the field
of applicability of this method. Despite progress, robust semantic segmentation
for surgical scene understanding remains a challenging problem with insufficient
high quality data to train deep architectures and more effort needed to exploit
all the available information on instrument geometry or from robotic encoders.
In this paper, we propose a novel multi-modal FCNN architecture that ex-
ploits visual, geometric and kinematic information for robust surgical instrument
detection and semantic segmentation. Our model receives two input images: one
image frame recorded with a da Vinci (Intuitive Surgical Inc, CA) system and
a second image obtained loading the associated kinematic data into a virtual
da Vinci Research Kit (dVRK) simulator. The global input is an image couple
showing real (containing visual features) and simulated (containing geometric
tools information from robot Computer-Aided Design (CAD) models) surgical
tools that share the same kinematic values. We show that the simulation images
obtained exploiting kinematic data can be processed in parallel with their real
counterpart to improve segmentation results in presence of variable light con-
ditions or blood. This is the first attempt that uses a deep learning framework
for parallel processing of images produced using a robot simulator and a laparo-
scopic camera to improve surgical tool segmentation avoiding iterative shape
matching. Due to a lack of a dataset annotated with both kinematic data and
segmentation labels, we built a custom dataset of 14 videos for the purposeﬂ

2 Methods

2.1 Dataset Generation with dVRK

We use the dVRK system to record both video and kinematic information about
the instrument motion. Because the system is robotics we can repeat movements
previously executed by an operator on a da Vinci Surgical Systerrﬁ (DVSS) in

3 https://www.ucl.ac.uk/interventional-surgical-sciences/davinci-segmentation-
kinematic
* https://www.intuitive.com/



Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery 3

dVRK First repetition
(Animal tissue)

——~ First network input

dVRK kinematic data recording

J!/‘m
"~ -~

dVRK Second repetition

(Green screen) dVRK tools mask

a B

dVRK Simulator Synthetic tools image Synthetic tools mask

-
- - - = Second network input

Fig. 1. The figure shows the workflow for the generation of our dataset. Once the
kinematic data of a movement is recorded using the dVRK, it is first reproduced
over an animal tissue background. A second repetition with the same kinematic is then
performed on an OLED green screen. The ground truth for each image is the generated
using background subtraction technique. The collected kinematic data are then loaded
on a dVRK simulator to produce simulation images of the tools, that are successively
binarized to produce the second input of the proposed FCNN.

Kinematic data

clinical practice. Each instrument on the dVRK held by the Patient Side Ma-
nipulators (PSM) is defined by 7 joints (6 revolute and 1 prismatic), while the
Endoscope Control Manipulator has 4 (3 revolute and 1 prismatic). In this study
we only use EndoWrist Large Needle Drivers for simplicity, although the same
workflow can be extended to the whole family of articulated surgical tools if ap-
propriate models and control information is available (currently not implemented
in dVRK).
To produce each video in the dataset we followed four consecutive steps:

— First, we perform a surgical movement recording kinematic data using our
dVRK;

— Then we collect image frames with animal tissue background using the
recorded kinematic data stream:;

— The same movement is reproduced a second time on a green screen to obtain
tools ground truth segmentation masks;

— Finally, for each frame, we produced an associated image of the virtual tools
obtained employing a dVRK simulator by making use of the recorded kine-
matic information.

Our dataset generation procedure is shown in Fig. [T}

Kinematic Data An action is first performed on the DVSS without a back-
ground and the kinematic information of the PSMs and ECM is recorded. The
recording framework was implemented in MATLAB using the Robotic System
Toolbox| to access robot articulations joint values from the dVRK. The result

® https://uk.mathworks.com /products/robotics.html
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is a 7 by N matrix for each PSM and 4 by N for the ECM, where each row
corresponds to one joint (starting from the ECM/PSM’s base till the tip of the
tool) and consecutive columns represent consecutive time steps.

Video Data The video frames are collected by repeating the recorded action
over an animal tissue background. The stored joint coordinates of all PSMs and
ECM are sent to the DVSS via the dVRK using our MATLAB interface in
order to have precise movement reproduction. Video images are synchronously
collected every 150 ms to avoid redundancy in the data.

Ground Truth Generation The segmentation ground truth is produced by
physically replacing the animal tissue background with a green screen. We chose
to use an Organic Light-Emitting Diode (OLED) screen emitting green light
to avoid shadows that generally decrease segmentation performances. Once the
screen is conveniently placed to entirely cover the camera Field Of View (FOV),
the same recorded action employed in the previous phase is reproduced. Finally
we removed the tools from the FOV and an image is collected showing only the
background. The segmentation ground truth for each frame is then obtained by
subtracting the background image to each frame and by applying a threshold to
the L1-norm of the subtraction result.

The ground truth generation procedure allows us to avoid issues originated by
a virtual replacement of the segmentation mask background, such as image mat-
ting and blending [3]. The reliability of our ground truth generation methodology
has been tested on 7 further video couples, where a same action was reproduced
twice on the green background. The resulting ground truth masks for each video
couple were then compared using Intersection over Union (IoU) metric, obtain-
ing an overall 99.8% median evaluation score with Interquartile Range (IQR) of
0.05%.

Simulation Images We load the kinematic data collected using our dVRK
into the simulation model [7] to virtually reproduce the performed movement in
CoppeliaSinﬁ[ZO}. Images were simultaneously collected at the same frame rate
used for the recorded videos in order to have synchronization between simulation
and dVRK information. The produced images were then thresholded to obtain
a segmentation mask used to feed the proposed network.

2.2 Network Architecture

We propose a double-input FCNN for simultaneous processing of frames col-
lected using the dVRK and segmentation masks of their simulated counterpart.
The architecture of the proposed network is shown in Fig. |2} We a used the com-
monly adopted U-net structure as starting point for our model [21I]. We chose
to concatenate features extracted from both inputs from a very early stage in

5 https://www.coppeliarobotics.com/
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Fig. 2. Architecture of the proposed model. Two connected branches are used to ex-
tract features from dVRK frames (RGB) and simulated tools segmentation masks
(Grayscale). The lower branch is made of residual blocks developed in [10] pre-trained
on Imagenet dataset, while the upper branch is composed of 4 convolutional blocks,
each one performing 3 convolutions + batch normalization + RELU activation. The
number of output channels for all encoders’ blocks is written at the end of each one of

them. The decoder part is described in [I7], taking encoder’s output and skip connec-
tions as input.

the network, that has shown to be more effective than merging them only in the
decoding part [9].

The encoder branch for dVRK frames processing was implemented following
work conducted in [I7] and [1I], where features are extracted from the image
using ResNet50 [10] blocks pre-trained on Imagenet dataset [5]. Each residual
block consists of multiple consecutive sub-blocks, namely 3, 4, 6 and 3 sub-
blocks for residual block 1 to 4 respectively. Each sub-block is composed by 3
convolutional layers, where a Batch Normalization (BN) and a Rectified Linear
Unit (RELU) activation are applied on the output of each convolution stage.
The resulting output is concatenated with the input of the sub-block using a
skip connection. We built a second branch parallel to ResNet50 for simulated
tools’ mask processing. Following ResNet50, a 7x7 convolution + BN + RELU
activation operation is first performed on the image. The result is then passed
through 4 consecutive convolutional blocks. At each block, the input coming
from the previous convolutional block is first concatenated with the output of
the relative parallel residual block. The result is then processed using 3 differ-
ent convolutional layers, i.e. a first 1x1 convolution with stride 1 to double the
number of channels, followed by a 3x3 convolution (stride 1x1) and a final 3x3
convolution with stride 2x2 to halve the output’s height and width.

The segmentation probability map is finally obtained concatenating the out-
puts of both the last convolutional and residual blocks and processing them
employing the decoding architecture (based on attention fusion modules and de-
coder blocks)developed in [I7]. Each attention block takes as second input the
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features extracted from intermediate encoding layers of both branches using skip
connection. Such methodology has shown to be particularly useful to properly
recover information lost in the network’s early blocks [21].

2.3 Loss Function Details

We selected the sum of per-pixel binary crossentropy [I7UT1] which has been
previously used for instrument detection and articulation tracking [6/I6], and
IoU loss (to prevent the network to be sensitive to class unbalance) as loss
function to train our model. The binary crossentropy is defined as:

1
Live = — § D, 4 (1 — 1-7 1
bee = 5 neg[pnloypn + (1 —pn)log(1 — py)] (1)

where p, and p,, are the FCNN output and ground truth values of pixel n
into mask domain (2.
IoU loss is defined as:

Lioy =1 —10Ucore (2)

and IoUj,core 18 defined as:

TP
I Uscore = 3
¢ TP+ FP+FN ®)

where TP is the number of pixels correctly classified as tools’ pixels, while
FP and FN are the numbers of pixels mis-classified as tools and background
respectively. Following [I1], we chose a threshold value of 0.3 to binarize our
output probability mask.

The resulting loss function is then defined by the sum of L., and Lj,,:

L= Lbce + LIOU (4)

3 Experiments and Results

Dataset We collected 14 videos of 300 frames each (frame size = 720x576), for
a total amount of 4200 annotated frames. In particular, 8 videos were used for
the training phase, 2 for validation and the remaining 4 for testing. We employed
5 different kinds of animal tissues (chicken breast and back, lamb and pork loin,
beef sirloin) for the entire dataset, changing the topology of the background and
varying illumination conditions in each video to increase data variability. Lamb
kidneys and blood were placed in the background and on the tools of the test set
videos in order to properly test algorithms’ performance on conditions not seen in
the training phase. Finally, following [6], we added Fractional Brownian Motion
noisd’] to simulate cauterize smoke on test set frames. Each frame has been first

" https:/ /nullprogram.com/blog/2007/11/20/
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Table 1. Comparison with the state of the art architectures on our test set [11] [17].
Results for each video are presented in terms of median Intersection over Union loU
score and Interquartile Range (IQR) over all video frames in percentages.

Median Value (%) / IQR (%) of IoU score
No smoke Added Smoke
Ternausnet Rasnet Proposed Ternausnet Rasnet Proposed
Video 1| 73.41/12.24 79.25/8.84 81.80/7.74 24.39/9.29 44.85/15.80 54.15/14.16

Video 4] 92.07/3.82° 95.09/2.15 95.16,/2.68 49.65/10.84 78.06/17.28 82.93/8.62

cropped to remove dVRK side artefacts and then resized to 256x320 to reduce
its processing computational load. We produced a simulation segmentation mask
(see Sec. [2)) for each frame using the dVRK simulator in order to feed our double-
input FCNN. All data will be made available for research.

Implementation and Runtime Analysis The proposed model was imple-
mented in Tensorﬂow/Keraﬂ and trained on GPU NVIDIA Tesla V100. We
chose Adam as optimizer for our network [12], with a learning rate of 0.001 and
exponential decay rates §1 and 82 of 0.9 and 0.999 respectively. We selected
the best model weights considering loU score as evaluation metric obtained on
the validation set.

Comparison Experiments We examined the benefit introduced by adding ge-
ometric and kinematic information in the network input by comparing our results
with the ones obtained using Ternausnet [1I] and Rasnet [I7] architectures after
being trained on the proposed training set. Performances were first evaluated
on the test set, repeating the prediction a second time on the same frames after
adding simulated smoke. We selected IoU as the evaluation metric. As shown in
Table |1} the proposed model achieved good results on all videos compared to the
state of the art, with an overall median IoU score of 88.49% (IQR = 11.22%)
on the test set and a score of 80.46% (IQR = 21.27%) when simulated smoke is
superimposed to dVRK frames. Rasnet and Ternausnet obtained IoU scores of
82.27% (IQR = 11.55%) and 76.67% (IQR = 13.63%) respectively on raw test
videos, while their median performances decreased to 75.78% (IQR = 23.48%)
and 54.70% (IQR = 34.57%) with added smoke. Focusing on single videos, the
lowest scores were obtained on Video 1 and Video 2 by all the considered ar-
chitectures, both with or without smoke. The best performances were instead
achieved by the proposed model on Video 4 (without smoke) and Video 3, with
more than 95% and 91% median IoU score respectively.

We carried out a further analysis only on test frames that present tools occlu-
sion to investigate models performances under this particular condition. Results

8 https://www.tensorflow.org/guide/keras
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Fig. 3. Visual example of the obtained results. An image frame for each video (first
column) is reported without added smoke (Video 1 and Video 2) and with smoke (Video
3 and Video 4). Segmentation results for Ternausnet, Rasnet and the proposed model
are displayed in columns 2, 3 and 4 respectively.

were evaluated using the same evaluation metric employed during previous ex-
periments. Even in this situation, the proposed model outperformed the other
architectures, achieving a median IoU of 93.70% (IQR = 1.94%), superior to
both Rasnet (median IoU = 87.45%, IQR = 2.80%) and Ternausnet (median
IoU = 84.38%, IQR = 5.91%)

Robustness Discussion Since no blood on the tools was seen during the train-
ing phase, all the architectures learned to label red pixels as background, leading
to a mis-classification of the tools’ portions covered by blood as seen in Fig.
Information extracted from segmentation masks of simulated tools helped the
proposed network to better recognize the non-covered areas on the tools. Such re-
sult is highlighted when smoke is added in the image, with AloU scores of 5.51%
and 20.62% on Video 2 and 5.58% and 13,18% on Video 3, compared to Rasnet
and Ternausnet respectively. Smoke also deteriorated segmentation performance
on videos with poor initial illumination conditions but our model showed good
results w.r.t Rasnet and Ternausnet, in this setting. A clear example is shown
in Table [I] for Video 2, where the decrease in performances due to presence of
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smoke for the proposed model is only 2.3%, against 4.46% and 15.07% suffered
from Rasnet and Ternausnet respectively. The worst results in presence of smoke
were obtained on Video 1, where the presence of blood, darkness and smoke led
all the considered models to segmentation performances below 55% (IoU score).
Finally, the behaviour of all the architectures on frames with tool occlusions
resembled the one in previous experiments, showing that such scenario do not
particularly affect the results.

4 Discussion and Conclusions

In this paper, we proposed a double-input FCNN for segmentation of surgical
tools from laparoscopic images. Our model takes as inputs both dVRK frames
and segmentation masks produced using a dVRK simulator. Each mask is gen-
erated by projecting the simulated tools, conveniently positioned using dVRK
kinematic data, onto the image plane. Our method achieved state of the art
performance against image only-based models, suggesting that geometric and
kinematic data can be employed by deep learning frameworks to improve seg-
mentation. We produced a new dataset with segmentation labels and kinematic
data for the purpose. Unfortunately, our procedure allows us to produce only bi-
nary ground truth. However, it could be interesting to improve the methodology
to generate semantic labels in the future.

At the best of our knowledge, this is the first attempt to join visual and kine-
matic features for tool segmentation using a multi-modal FCNN, avoiding itera-
tive shape-matching algorithms [19]. A further comparison with these methods
could however be taken in consideration as future work. Several ways could be
investigated as well to improve our method, e.g. using a residual-learning mod-
elling approach to estimate the difference between simulated and estimated tool
masks or trying different architectures [9] to better exploit segmentation input.
Moreover, it could be interesting to study the performances of the proposed
model when noise is added to the kinematic data. Finally, a scenario with tool-
tissue interaction could be of great interest from the dataset generation point of
view as well for further evaluation analysis in such conditions.
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