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Abstract. Intra-operative identification of malignant versus benign or healthy tissue is a major challenge
in fluorescence guided cancer surgery. We propose a perfusion quantification method for computer-aided
interpretation of subtle differences in dynamic perfusion patterns which can be used to distinguish between
normal tissue and benign or malignant tumors intra-operatively in real-time by using multispectral endo-
scopic videos. The method exploits the fact that vasculature arising from cancer angiogenesis gives tumors
differing perfusion patterns from the surrounding tissue, and defines a signature of tumor which could be
used to differentiate tumors from normal tissues. Experimental evaluation of our method on a cohort of col-
orectal cancer surgery endoscopic videos suggests that the proposed tumor signature is able to successfully
discriminate between healthy, cancerous and benign tissue with 95% accuracy.

Keywords: Perfusion quantification· bio-physical modeling · Explainable features design · Tissue classifi-
cation · Cancer.

1 Introduction

Quantification of perfusion4 using a fluorescent dye, such as Indocyanine Green (ICG), has become an important
aid to decision making during surgical procedures [3,14]. ICG is currently utilized in fluorescence-guided surgery
for identification of solid tumors [24], verification of adequate perfusion prior to anastomosis during colorectal
resection [11], lymph node mapping during lymphadenectomy [28], and identification of biliary tract anatomy
during colectomy [1]. Visible and near infra-red (NIR) light sources are widely available in laparoscopic/endoscopic
cameras, providing high-resolution, multispectral video of blood flow in tissue and organs. An example frame
captured by a Stryker PINPOINTTM clinical camera is shown in Figure 1.

Intra-operative identification of malignant versus benign or healthy tissue is a major challenge of cancer surgery.
A surgeon typically uses a combination of visual and tactile evidence to identify tissue during a surgical procedure.
ICG has been observed to accumulate in cancers, [29]. In practice, however, consistent intra-operative detection
of sometimes subtle and complex differences in ICG perfusion has proven challenging. Intra-operative interpreta-
tion requires a surgeon to track spatial and temporal fluorescence intensity patterns simultaneously over several
minutes, and it can be challenging to distinguish variations in relative fluorescence intensity due to confusing
factors such as inflammation [13]. We hypothesize that observation of differences in structure of vasculature and
perfusion patterns using ICG-enhanced fluorescence could be used to differentiate between benign, malignant,
and healthy tissue, and that perfusion patterns characterized by ICG inflow and outflow can serve as a marker
to identify most of the benign and malignant tumors intra-operatively [13].

It seems natural to ask, therefore, whether computer assisted interpretation of perfusion could assist with in-
terpretation of perfusion by approximating the judgement of a surgeon with high probability? In addressing this
question we propose a method, as our key contribution, based on bio-physical modeling of in-vivo perfusion.
Our model characterizes dynamic perfusion patterns by (i) estimating time-series of ICG fluorescence intensities,
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4 Perfusion is the passage of fluid through the circulatory or lymphatic system to a capillary bed in tissue.
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Fig. 1. Left: visible light frame (top); NIR frame (center); brightness from NIR frame is used as green channel in vis.light
frame (bottom); large panel cycling between 3 panels to the left.

representing ICG inflow and outflow within a region of the tissue, from multispectral videos, and (ii) fitting
parameters of a bio-physical perfusion model to the estimated time-series to create a compact signature of per-
fusion consisting of a vector of bio-physical features of ICG inflow and outflow, (iii) showing experimentally that
the generated signature of perfusion parameters is discriminant for benign, malignant and normal tissue using
traditional machine learning (ML) techniques. Our method is agnostic to camera technologies employed, relying
only on the availability of multispectral video signals from a laparoscopic or endoscopic fluorescence imaging cam-
era. The parameters of our bio-physical model are readily interpretable, and the derived signature characterizes
pharmacokinetics of blood-ICG admixtures in tissue by a vector of features described below (see Table 1).

We perform experimental validation on a corpus of 20 colorectal cancer multispectral endoscopic videos captured
during surgical procedures. An experimental framework is implemented combining computer vision with a bio-
physical model and machine learning. By estimating time-series of ICG intensities for a number of randomly
selected Regions of Interest (ROIs) we fit parameters from our bio-physical model to time-series of ICG intensities
and derive a signature for each ROI. The derived bio-physical signatures are subsequently used as input features
for standard supervised classification methods to attempt to differentiate normal ROIs from suspicious (benign
or malignant tumors). Experiments show that our approach can match the intra-operative interpretation of an
expert surgeon with 86% accuracy for ROI-based correctness, and 95% accuracy for patient-based correctness (i.e.,
compared with subsequent post-operative pathology findings on excised tissue) with 100% sensitivity (percentage
of correctly detected cancer) and 92% specificity (percentage of correctly detected normal tissue).

Our choice of traditional ML technologies is deliberate, and intended to emphasize that high quality computer
assisted interpretation in real-time can be provided even for limited-size datasets by combining basic ML tools
with bio-physical models of perfusion. We suggest our approach represents a valuable step towards computer
assisted automation of intra-operative interpretation of tissue.

Related work Image-based cancer detection methods have received significant attention with the advent of
advanced fluorescence imaging systems and progress in image processing. We consider methods under three
categories: (1) image classification using deep learning, (2) observation by the surgeon of perfusion in the colon
and, (3) quantitative analysis of bio-physical models based on perfusion patterns.

Deep learning has been applied for cancer screening using images from mammography ([20]) and histology
([26]). Deep learning methods typically require significant numbers of labelled training examples for each class
to estimate model parameters. The cancer screening study ([20]) for example, required several tens of thousands
of mammograms with known pathology. For image-based classification, several deep learning architectures have
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t = 660s t = 670s t = 680s t = 690s t = 700s t = 710s

t = 720s t = 730s t = 740s t = 760s t = 770s t = 790s
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Fig. 2. Perceptual hashing algorithm [15,19] applied on one of the perfusion videos used in this study. Selected images till
the end of the perfusion t = 860s are near duplicates of the first frame.

been proposed. Examples include robust recurrent convolutional neural networks and ensembles of deep learners
that include pre-trained networks.

In contrast, the approach taken here involves feature engineering based on bio-physical models combined with
transitional ML classifiers. This approach is better suited when training data is limited. Since we are primarily
interested in perfusion dynamics, i.e. the evolution of fluorescence in specific tissue over time, the task is one of
video classification. This task cannot be readily translated to an image classification problem for several reasons,
precluding the use of existing methods. Although containing many individual images, each surgical video represents
only a few sufficiently distinct images and results in significant duplication when used as a training set. As shown
in Fig. 2, for one of the videos used in this study, most of the frames of the NIR video are near duplicates when
compared using perceptual hashing [15,19]. Attempting to augment the training set by, for example, (i) tiling
video’s initial frame with many ROIs (see Fig. 3 for an example of selecting ROIs) and creating a new video
for each ROI by extracting the corresponding ROIs from every subsequent frame, or (ii) extracting short time
sequences of entire frames, or (iii) combining (i) and (ii) to increase the amount of data, is still observed to result
in significant duplication for the training set in our experiments.

Observation of perfusion patterns by surgeons is common practice for anastomoses [3,10]. However, the changes
in the perfusion needed to discriminate cancer are not easily detected by visual observation (Fig. 2) [6,16,27].

Differences in vasculature are used in [17] to build a statistical hidden Markov model of perfusion from DCE-MRI
images for breast cancer. A key difference between the approach in [17] and the multispectral NIR video used
here is that the NIR video has a much higher sampling rate (10 frames per second for both NIR and visible light)
in comparison with DCE-MRI images in [17] (taken every 90 seconds).

Mathematical models describing the bio-physics of perfusion provide an alternative method for detecting can-
cerous ROIs. The premise of this method is that differences in ICG inflow during a relatively short timeframe
of minutes after injection known as the wash-in phase, and ICG outflow during the beginning of the venous
outflow, termed the wash-out phase, can serve as a marker for most benign and malignant tumors. Indeed, can-
cer angiogenesis has been recognized to lead to abnormal vasculature , characterized by higher internal pressure
and a discontinuous basement membrane, in comparison with normal, healthy tissue [21,7]. Hence, ICG inflow
over a wash-in phase could already disclose valuable discriminative signatures. In addition to this, it was noted
that most of the malignant tumors are characterized by “increased interstitial pressure from leaky vessels” and
“relative absence of intra-tumoral lymphatic vessels” [9] which suggests that fluid “could pool” in the malignant
tumor over time causing the retention of the “tracer”, thus demonstrating differences of ICG outflow during
wash-out phase. Finally, benign tumors are known to exhibit slower blood vessel growth, while malignant tumors
are characterized by more rapid blood vessel growth [4] implying that ICG inflow/outflow patterns for benign
and malignant tumors are different too.
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Perfusion quantification based on estimating time-series of ICG fluorescence intensities, and then extracting a
number of so called time-to-peak (TTP) features directly from the time-series is well represented in the surgical
literature. TTP-features have direct physical meaning (for example, Fig. 4 in Section 2.1), and have been suc-
cessfully applied to perfusion quantification on animals [8], and for predicting anastomotic complications after
laparoscopic colorectal surgery [27].

Biological compartment models, [30,5], model the dynamics of ICG inflow to a small compartment of the tissue
during the initial wash-in phase, and ICG outflow during the subsequent wash-out phase. As a typical example,
[12] model the ICG time-series as a sum of two exponentials. In [5], a slightly more general model using arterial,
capillaries and tissue/extravascular compartments is used. These models were successfully tested on animals.

The bio-physical model proposed here generalizes models proposed in [5,12] by modeling ICG intensity time-
series as a response of a generic second-order linear system with exponential input, which is a sum of one real and
two complex exponentials, to allow for oscillating behaviors observed in ICG time-series estimated from videos of
human tissue perfusion (e.g., Fig. 1 and Fig. 5).The coefficients and exponents of these exponential terms form a
set of features which we will call 3EXP.

To exploit the natural synergy between surgical approaches to perfusion quantification and bio-physics we
define a tumor signature as a combination of 3EXP and TTP features. Combining features in this way results
in significant improvements in accuracy over predictions obtained by using 3EXP or TTP features separately
taken in our experiments (see Section 3.2). The latter show that TTP features slightly outperform 3EXP when
comparing individual ROIs, while accuracy of patient-based comparison is significantly higher for 3EXP features.
Most importantly, the combination of 3EXP and TTP features taken together are synergistic: 95% accuracy for
patient-based correctness (up by 10 percentage points) with 100% sensitivity (up by 23 percentage points) and
92% specificity. To the best of our knowledge this is the first time a combination of a generalized compartment
model with TTP-features has been successfully applied to provide a discriminative signature of tumors in human
tissue.

2 Methods

Data preprocessing: Fluorescence intensity estimation. The data sources here are composed of multispec-
tral endoscopic videos (e.g. Fig. 1). It is noted in [2] that for ICG concentrations used in the surgical procedures
considered here, fluorescence intensity at the peak wavelengths is proportional to the ICG concentration, conse-
quently we use the NIR intensity extracted from the NIR-channel video frames (see Fig. 3) as a proxy for the
ICG concentration in the tissue.

The initial frame of each video has areas of suspicious and normal areas identified by a surgical team (see Fig. 3,
panel C). We randomly select ROIs within those areas, e.g. ROI 0 and 1 in Fig. 3. After injection of the NIR
dye, the NIR intensity within each of ROIs is extracted from the NIR video stream for as long as the ROI stays
visible in the field of view. Data collection is straightforward only if the camera and the tissue within field of view
do not move. For inter-operative surgical use, the camera is handheld and tissue contracts and expands, making
acquisition very challenging. For example, ROI 0 in Fig. 3 between time t = 1s and t = 300s shows considerable
drift.As this is typically the case in colorectal surgical procedures, motion stabilization techniques [25] are required
to compensate for motion during collection of time-series. In what follows we assume that the data collection has
already taken place.

The outcome of data preprocessing is a set of time-series estimating temporal evolution of the NIR intensity
for each pixel contained in each ROI. The NIR intensity in each ROI is further aggregated by taking the mean
brightness across the pixels in every ROI, and measure the variation by standard deviation as depicted in Fig. 3,
panel A. After aggregating the brightness across all the pixels within a ROI for each time-step, we get a time-series
of intensities for each ROI; let Ip,r(t) denote the aggregated intensity of ROI r in patient p at time t. The time
axis is t ∈ {0, δt, 2δt, . . . , Tp,r}, where δt is dictated by the frame rate of the imaging equipment (here, δt = 0.1s)
and Tp,r denotes the time at which either ROI r was lost or tracking was eventually terminated.

2.1 Parametric bio-physical models

To create bio-physical signatures we parametrize time-series of NIR intensities Ip,r(t) as follows:

y(t; τ,D,K, τi, θ, ydc) = yexp(t− θ; τ,D,K, τi) ·H(t− θ) + ydc (1)
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Fig. 3. Panel A: NIR-intensity time-series for 300 seconds post ICG administration for two ROIs; blue trace I0(t) (ROI 0)
and green trace I1(t) (ROI 1). At time instant t the value Ii(t) equals the mean of the intensity taken over ROI i, i = 0, 1,
and the bands denote ± one standard deviation around that mean. Panel B: White – visible light video sequence, NIR –
NIR light sequence used for NIR-intensity estimation. Panel C: ROI with surgical team annotation, and a classification
results showing ROIs correctly classified as normal (green) and cancer (light blue).

where yexp(t; τ,D,K, τi) is the response of a linear time-invariant second-order system to an exponential input (see
e.g. [23]), i.e. yexp solves the differential equation

τ2ÿ(t) + 2Dτẏ(t) + y(t) = Ke−t/τi , (2)

with zero initial conditions, y(0) = ẏ(0) = 0; τ is the time constant, and D is the damping, which together
govern the speed of the response and whether there are oscillations; K is known as the gain and responsible for
the amplitude of the response, and τ−1

i is the input decay rate which determines the rate of decay for large
t. Finally, θ in (1) is a time delay, which accounts for the time it takes from the start of the video until the
ICG reaches the imaged tissue, whereas ydc represents the background fluorescence observed until that point;
H(t− θ) = 0 for t ≤ θ, and H(t− θ) = 1 for t > θ, hence this term ensures that y(t; τ,D,K, τi, θ, ydc) = ydc until
fluorescence levels increase past the background level.

This parametrization includes many biological compartment models such as [5,12] as special cases: They typically
model Ip,r as a sum of two or three exponentials with real coefficients and exponents; as shown in (4), the response
yexp allows for complex values in coefficients and exponents, and hence can model oscillations observed in ICG
time-series estimated from videos of human tissue perfusion (see also Fig. 5).

The parameters are estimated by solving the following optimization problem:

minimize J(τ,D,K, τi, θ, ydc; Ip,r) =
∑
t

(
y(t; τ,D,K, τi, θ, ydc)− Ip,r(t)

)2
such that D,K, θ, ydc > 0 and 0 < τ < τi (3)

The objective in (3) is a weighted least-squares data-misfit: minimizing J one finds parameters τ,D,K, τi, θ, ydc
such that (1) is as close as possible to the data Ip,r. The constraints in (3) enforce the parameters to be strictly
positive. The intuition behind the constraint on τ and τi is that τi captures the slow decay during the wash-out
phase, whereas τ governs the more rapid wash-in; a faster process has a smaller time constant.
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We also include a heuristic weighting term W (t)
/
S2
p,r(t) , whose two parts serve different purposes: W (t) em-

phasizes the wash-in phase represented by approximately the first 60 seconds of the NIR intensity time-series
to avoid over-emphasizing the slower decay stage, which can last several minutes. W (t) = W1 for t ≤ t0 and

W (t) = W1(W1/W2)t0/(T−t0)e
− ln(W1/W2)

(T−t0)
t

for t0 < t ≤ T , so that it equals a constant W1 up until t0 and then
decays exponentially to a smaller constant W2 at the final time T . The constants Wi and t0 are chosen experi-
mentally (see Section 3.2). Sp,r(t) is the (thresholded, to avoid division by zero) standard deviation of the pixel
brightness computed across all the pixels within ROI r of patient p at time t, and is used as a measure of data
quality.

Problem (3) can be solved by any stand-alone solver supporting box constraints. In Section 3, the trust-region
reflective method as implemented in SciPy [18] was used. Two examples of fitted responses y(t; τ,D,K, τi, θ, ydc)
are given in Fig. 5.

Features of fluorescence intensity dynamics For each patient and ROI, we obtain the corresponding time-
series of NIR intensity, Ip,r(t) for t ∈ {0, . . . , Tp,r} and estimate six parameters (τ,D,K, τi, θ, ydc) as suggested
in Section 2.1. Of those, only the (τ,D,K, τi, θ) are meaningful, as the offset ydc depends on the background
brightness and hence on the imaging equipment and the conditions under which the data is collected, but not on
the tissue itself. We further derive additional features from the five basic parameters.

It is well-known from linear systems theory [23] that yexp can also be represented as follows:

yexp(t; τ,D,K, τi) = A1e
λ1t +A2e

λ2t +A3e
λ3t, (4)

A1 =
Kτ2i

τ2i + τ2 − 2Dττi
, λj = −D − (−1)j

√
D2 − 1

τ
, Aj = K

D + (−1)j
√
D2 − 1− τ/τi

2
√
D2 − 1(1− 2Dτ/τi + (τ/τi)2)

, (5)

where j = 2, 3 and λ1 = − 1
τi

. Intuitively, (4) can be split into slow and fast components: the slowest component

is given by A1e
λ1t (as per the constraint 0 < τ < τi enforced in (3)), it captures wash-out and the final decay of

NIR-intensity and is effectively defined by τi (larger τi – slower decay); in contrast, the wash-in phase is mainly
governed by the fast components A2e

λ2t +A3e
λ3t, the dynamics of the second-order response.

Note that while there is a one-to-one mapping between (Ai, λi) and the parameters (τ,D,K, τi, θ, ydc) of (1),
fitting (Ai, λi) to the data Ip,r directly may require working numerically with complex numbers, and that the
Ai have no clear physical meaning; hence it is hard to give physically meaningful constraints on λi and Ai. For
(τ,D,K, τi, θ, ydc), this is straightforward, see also the discussion below (3).

The real and imaginary parts of Ai and λi, i = 1, 2, 3 in (4) form a set of features, which we call 3EXP.
Another popular way of quantifying perfusion in the surgical literature is based on extracting a number of so
called time-to-peak (TTP) features Tmax, T1/2max, TR and Slope, which are presented in Fig. 4, directly from the
estimated NIR-intensity time-series Ip,r. To exploit the natural synergy between surgical approaches to perfusion
quantification and bio-physics we define a tumor signature as a combination of 3EXP and TTP features. Here
we compute TTP features directly from the fitted response y(t; τ,D,K, τi, θ, ydc) after solving (2) and getting the
parameters of (1). In summary, we obtain a bio-physical signature represented by the twelve features summarized
in Table 1, all obtained from the fitted response.

3 Experimental validation: tissue classification

3.1 ROI classification

The ROI classification task seeks to assign a medically relevant label to each ROI for which the signature, a vector
of features described in Table 1, is available. A supervised machine learning approach is employed to perform this
step. Fig. 6 shows an overview. Two classification accuracy metrics are reported experimentally, one related to ROI
level classification and another to patient-level correctness. The classifier is trained on a corpus of multispectral
videos for which ROI annotations are provided by a surgical team and used as a groundtruth to assess ROI
accuracy. Additionally a single, per-video, case-level label is provided through post-operative pathology analysis.
Case-level labels are used experimentally as a groundtruth to assess case accuracy.
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Fig. 4. This figure illustrates features Tmax, T1/2max,
Slope, and TR = T1/2max/Tmax as they are defined
in [27].
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Fig. 5. One profile with oscillations, corresponding to D < 1
in (2) and complex values for Ai and λi, i = 2, 3, in (4), and
one without oscillations, which corresponds to D ≥ 1 and real
parameters Ai, λi.

Table 1. Signature: 3EXP+TTP features

Feature Bio-physical meaning

Tmax Time to reach first NIR intensity peak

T 1
2
max Time to reach half the above peak value

TR Ratio of T 1
2
max/Tmax

Slope Approximate rate of increase until NIR intensity reaches peak

−λ1 Slowest rate of decay, i.e. the wash-out rate

−<λ2,−<λ3
Fastest and 2nd-fastest rates of decay; equal if there are oscillations, see
next row.

=λ2 = −=λ3 If 0, then no oscillations, else defines the frequency of initial oscillations

A1,<A2,<A3,=A2 = −=A3 Coefficients of the three exponentials

With the ROIs defined, the vector of features (see Table 1) is obtained as described in Section 2.1. Given the
number of cases available, a Leave-One-Out (LOO) evaluation scheme was employed. There are known limitations
to LOO evaluation, such as higher variance for other training data, but given our cohort size we use this approach.
The model is trained with ROI and case labels for n − 1 patients and tested on the n-th patient by selecting
random ROIs from the n-th video. This process is repeated n times, hence each case video is used as the test
video once.

The processing pipeline implements several practical quality criteria. First, quality checks on the input data
extracted from videos are needed. Several filtering rules were implemented to ensure that the estimated parameters
τ,D,K, τi, θ were meaningful. To ensure that the fits adequately represented the underlying data, a threshold of
10% was also considered on the L1 loss. ROIs that failed these quality checks were returned with a ‘No Prediction’
label.

We consider three class labels: ‘normal’, ‘benign’, and ‘cancer’. For ROIs meeting the quality criteria above,
the classifier returns class probabilities for each label. We experimented with two variants of the classifier. A
three-class model, where each ROI was labelled as one of the three classes, and a two-class model where only
suspicious ROIs were classified as either cancer or benign. The two-class model performed significantly better and
results are presented for this case in Section 3.2.

A noisy-OR aggregation from the set of predicted ROI-level classifications is used to derive a patient-level label.
Specifically, for a case with n ROIs, c of which are predicted to be cancerous, the case level class probability
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1. Fluorescence intensity estimation 2. Biophysical models 3. Region classification
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Fig. 6. Process for classifier design. Each step of the pipeline was used to assemble a labelled dataset from a corpus
of multi-spectral videos. A supervised classification algorithm was trained and evaluated based on a leave-one-out test
framework.

is derived as P (’cancer’) = c
n (1 − pfp) + n−c

n pfn where pfp and pfn are the false positive and false negative rate
estimated from a validation sample.

Significant patient-level variations were observed in the data. To mitigate this in the two-class model, a set of
healthy ROIs are used as a reference for feature values. The classifier is trained with features regularized using
the healthy reference. This normalizes the features across patients. All features were split into two classes: ‘rate
features’ (e.g. λ1,<λ2,<λ3,Slope), and ‘absolute features’ (e.g. Tmax, T12max, TR). ‘Rate’ features were normalized

as a ratio, e.g. λcancer1 7→ λcancer1

/
λhealthy1 , and ‘absolutes’ were subtracted from the reference value.

3.2 Dataset and evaluation results

The data. The proposed signature was evaluated by performing ROI classification on a dataset of 24 patients (11
with cancer) comprised of 24 multispectral endoscopic videos with annotations of suspicious and healthy ROIs
(Figure 6). ROI annotations were provided by a surgeon, and pathology findings per patient (normal, cancer,
benign) were given from post-operative pathology analysis.

To evaluate classifier performance, several ROIs were selected at random for each patient(ranging between 11
and 40 ROIs per case) defining a total of 526 samples with labels. For each of these ROIs, NIR-intensity time-
series were estimated as described in Section 2. The length of the time-series focused on the initial wash-in period:
time-series lasted between 100 and 300 seconds for each ROI. Each time-series was next assigned a signature of
features described in Table 1 by solving (3) using the curve fit functionality from the optimize package of
SciPy [18] by means of the trust-region reflective method (’trf’) and taking τ < 100, τi > 150, W1 = 10, W2 = 1
and t0 = 100.

Several ROIs from the resulting dataset were discarded as quality thresholds were not met. Specifically, seven
ROIs were discarded as the time series was too short, several others if damping coefficient D was unrealistic.
The time constant τ on 32 occasions was too large and the fit L1 error exceeded 10% on nine occasions. After
discarding all these cases, the resulting dataset had 435 samples from 20 patients (8 with cancer) with 12 features
per sample as shown in Table 1. The resulting dataset of ROIs was relatively balanced in terms of outcomes:
“benign” (n=198), “cancer” (n=124), and “normal” (n=181).

Classifier. We experimented with several combinations of feature sets, filtering rules, and machine learning
algorithms. The best performing feature set was based on 3EXP -features combined with TTP -features (Table 1).
Several standard classifiers from the Scikit-Learn package [22] were tested. The ensemble gradient boosted tree
method was found to perform the best. This model was further refined using a grid search to fine tune the
hyper-parameters. An example of a classification result is given in Fig. 3, panel C.

Results. Table 2 shows results for a set of tested classifiers. For the best performing pipeline, using the gradient
boosted classifier, mean LOO accuracy score for ROI-based correctness was 86.38%, i.e. the fraction of ROIs
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Table 2. Evaluation results comparing several classifiers for the same features. The last two rows show the best performing
pipeline on different feature sets.

Features Model Mean ROI accuracy Case Accuracy Sensitivity Specificity

3EXP + TTP Nearest Neighbors 71.49% 65.00% 50.00% 75.00%
SVM (RBF) 76.60% 65.00% 25.00% 91.67%
Gaussian Process 68.51% 60.00% 0.00% 100.00%
Decision Tree 85.53% 90.00% 100.00% 83.33%
Random Forest 78.30% 65.00% 50.00% 75.00%
Naive Bayes 48.09% 50.00% 37.50% 58.33%
QDA 54.04% 55.00% 62.50% 50.00%
XGBoost 86.38% 95.00% 100.00% 91.67%

3EXP XGBoost 76.95% 85.71% 77.78% 91.67%
TTP XGBoost 82.55% 70.00% 50.00% 83.33%

correctly predicted in unseen patients. Case accuracy to be 95% (19 out of 20 cases), i.e. the number of unseen
patients correctly classified. The best performing pipeline has a 100% cancer sensitivity and 91.67% specificity for
patient-level classification. The results strongly suggests that the signature, defined by 3EXP- and TTP-features
is discriminant.

We also show a comparison of feature sets. TTP -features offer a slightly higher performance on ROI classification
accuracy compared to the exponential features (3EXP). However, 3EXP has a 15.7% point improvement in case
accuracy, 27.8% point improvement in sensitivity, and a 8.34% point improvement in specificity (a difference of
two patients).

4 Conclusions

We propose a method, based on bio-physical modeling of in-vivo perfusion, that characterizes dynamic perfusion
patterns by a compact signature, a vector of twelve biophysical features which could be used to differentiate
tumours from normal tissues. For validation of the proposed signature we implemented an experimental framework
combining computer vision with our bio-physical model and machine learning (ML) using readily available open
source tools. Experiments on a corpus of 20 colorectal cancer multispectral endoscopic videos captured during
surgical procedures, showed that the generated signature of perfusion parameters is discriminant for benign,
malignant and normal tissues.

Overall, experimental results suggest that our approach can reproduce the expert judgement of both a surgeon
intra-operatively and of post-operative pathology analysis. Our results suggest that our approach is a promising
step towards fully automated intra-operative interpretation of tissue enabling future research in areas such as
tumor delineation and tissue structure modeling. An immediate research priority is to further test and refine
our models by scaling up the collection, processing and classification of videos to include more collaborators,
procedures and applications. In the longer term integration with hardware platforms for robotic surgery is also a
promising avenue for future research.
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