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Abstract. Segmentation of the fetal brain from stacks of motion-corrupted
fetal MRI slices is important for motion correction and high-resolution
volume reconstruction. Although Convolutional Neural Networks (CNNs)
have been widely used for automatic segmentation of the fetal brain, their
results may still benefit from interactive refinement for challenging slices.
To improve the efficiency of interactive refinement process, we propose
an Uncertainty-Guided Interactive Refinement (UGIR) framework. We
first propose a grouped convolution-based CNN to obtain multiple auto-
matic segmentation predictions with uncertainty estimation in a single
forward pass, then guide the user to provide interactions only in a subset
of slices with the highest uncertainty. A novel interactive level set method
is also proposed to obtain a refined result given the initial segmentation
and user interactions. Experimental results show that: (1) our proposed
CNN obtains uncertainty estimation in real time which correlates well
with mis-segmentations, (2) the proposed interactive level set is effec-
tive and efficient for refinement, (3) UGIR obtains accurate refinement
results with around 30% improvement of efficiency by using uncertainty
to guide user interactions. Our code is available onlineﬂ
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1 Introduction

Due to the good soft tissue contrast, fetal Magnetic Resonance Imaging (MRI)
is an important tool for diagnosis of abnormalities of the fetal brain during
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pregnancy [6]. However, MRI is susceptible to motion of fetuses during scanning.
To mitigate this problem, fast imaging techniques are often used to obtain stacks
of 2D slices that have good in-plane image quality but suffer from large inter-
slice motion and low 3D resolution. Segmentation of the fetal brain from stacks
of fetal MRI slices plays a critical role for correcting the inter-slice motion and
reconstructing a high-resolution 3D volume for fetal brain studies [2/6T2].

Despite the fact that deep learning with Convolutional Neural Networks
(CNNs) has obtained state-of-the-art performance for automatic fetal brain seg-
mentation from fetal MRI [2/12], it is still difficult for these automatic segmenta-
tion methods to obtain accurate results when dealing with images with motion
artifacts, abnormal appearances due to pathologies and some challenging local
regions [12]. To address this problem, an efficient interactive method to refine
the automatic segmentation result is highly desirable in practice, which makes
the segmentation more accurate and robust to be clinically useful [I5IT6].

In the literature, some recent works [L6/18] use a second CNN that takes the
initial automatic segmentation result and additional user interactions as input
to obtain a refined result. In [I5], image-specific fine-tuning and Graph Cut [I]
were used for interactive refinement. Though these methods achieved higher
accuracy and efficiency than traditional interactive segmentation methods [17],
when used to segment a volumetric data, they require the user to carefully
check the initial segmentation in 2D views slice-by-slice and manually identify
mis-segmented regions to give interactions for refinement. For stacks of fetal
MRI slices, automatic CNNs could obtain accurate initial segmentation for most
slices [2J12], manually identifying mis-segmented regions may be unnecessary
for accurately segmented slices while sometimes difficult for challenging slices.
Therefore, the efficiency of such methods is limited.

To improve the efficiency for user interactions, leveraging the uncertainty in-
formation of the initial segmentation has been shown to be a promising method [13]
as it can automatically identify potential mis-segmentations and guide the user
to give interactions only in some uncertain regions. Despite the availability of
several reliable uncertainty estimation methods for CNN-based segmentation,
such as Monte Carlo (MC) dropout [3], model ensemble [8I5] and test-time aug-
mentation [I4], they require multiple forward passes at inference time and cannot
provide real-time uncertainty estimation for guiding user interactions. Alterna-
tively, a Bayesian Network has been proposed for fast uncertainty estimation
with a single forward pass [4]. However, their utility for guiding interactive re-
finement has not been investigated.

In this paper, we propose a novel uncertainty-guided framework for interac-
tive refinement of automatic segmentation obtained by CNNs and apply it to
fetal brain segmentation from fetal MRI. The contribution is three-fold. First,
to obtain real-time uncertainty estimation, we propose a novel method using
Grouped Convolution (GC)-based CNNs. It obtains multiple predictions simulta-
neously with a single model and gives uncertainty estimation in a single forward
pass, which is more suitable in the scenario of interactive refinement. Second, we
propose to guide the user to give interactions more efficiently during refinement
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Fig. 1. The proposed Uncertainty-Guided Interactive Refinement (UGIR) framework
for fetal brain segmentation. For an input stack with M slices, the user only needs to
give interactions in a subset of M'(M' < M) slices with the highest uncertainty.

according to the uncertainty information. Thirdly, we propose a novel interactive
level set method that incorporates the initial segmentation and user interactions
in a uniformed framework to obtain accurate refined results efficiently. The su-
periority of our framework over existing methods was validated in the task of
fetal brain segmentation from stacks of motion-corrupted fetal MRI slices.

2 Methods

Our proposed Uncertainty-Guided Interactive Refinement (UGIR) framework
for efficient interactive fetal brain segmentation is shown in Fig. [1] First, a novel
CNN based on convolution in Multiple Groups (MG-Net) simultaneously ob-
tains the initial segmentation and uncertainty estimation of a stack of MRI
slices in real time. Let S,, (m = 1, 2, ...) denote the slice with the m-th high-
est uncertainty. Our framework automatically and iteratively fetches slice S,
as suggestion for user interactions. After the user gives interactions in S,,, a
novel interactive level set method obtains the refined result of S,,. The iterative
refinement is finished when no further slice is suggested by the framework.

Simultaneous Initial Segmentation and Uncertainty Estimation. We
propose MG-Net to obtain simultaneous initial segmentation and uncertainty
estimation in real time with a single network and a single forward pass for in-
ference, which is more efficient for interactive segmentation than typical uncer-
tainty estimation methods including MC dropout [3] and model ensemble [5Ig].
As shown in Fig. 2| we modify U-Net [I1] by using Grouped Convolution [7].
An N-grouped convolution layer splits the input feature map along the chan-
nel dimension into N groups each with C; channels. For each group, it uses a
convolution kernel of shape C, x C; X h X w respectively, where h X w is the
spatial size of the kernel. Therefore, N independent feature maps are obtained
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Fig. 2. The proposed MG-Net that obtains N (e.g., 4) predictions corresponding to
N groups of features. The numbers over each feature map such as N x C' are group
number X channel number of each group. GC(N) denotes convolution with N groups.

each with C, channels. They are concatenated into a single one with N x C,
channels. Note that there is no correlation between different groups in the out-
put feature map of an N-grouped convolution layer. Similarly, we implement
up-sampling layers by transposed N-grouped convolutions, and extend standard
channel concatenation to group-wise concatenation to keep the N groups inde-
pendent of each other. Let F; and F5 represent two feature maps each with NV
groups. We first concatenate the n-th group of F; with the n-th group of Fs, and
denote the result as ﬁ'n Then 13"1, Fg, ..., and F v are concatenated as the group-
wise concatenation of F; and F5. The group-wise concatenation is used for skip
connection between feature maps in the encoder and their counterparts in the
decoder, as shown in Fig. 2] At the last layer of the decoder, we apply softmax
to each feature group respectively (i.e., group-wise softmax) to obtain N proba-
bility predictions. Therefore, MG-Net can be seen as an ensemble of N parallel
sub-networks, and they are randomly initialized and trained with dropout to
obtain diversity. At the lowest resolution level of MG-Net, we set group number
to one to allow communication of these N sub-networks for better performance.

For training, we apply the same segmentation loss function (i.e., Dice loss [10])
to the N predictions respectively and average their loss values for back-propagation.
At inference time, we take the pixel-wise mean value and variance of the N
probability predictions as the final segmentation probability map and pixel-level
uncertainty estimation, respectively. The mean foreground probability map is
thresholded by 0.5 to obtain a binary segmentation mask.

Uncertainty-Guided User Interactions. For a stack of M slices, the CNN
is able to obtain accurate segmentation for most slices and only a few slices
may require manual refinement [I2]. To avoid unnecessary and time-consuming
manual search for mis-segmentations of each slice, we ask the user to check and
refine only M’ (M’ < M) slices with the highest slice-level uncertainty. For
a slice 9, its binary segmentation result Y and pixel-level uncertainty map U,
a naive slice-level uncertainty can be defined as v* = Zx Uyx where Uy is the
uncertainty of pixel x. However, this may lead a slice with a small target to
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be neglected as it often has a low value of v* due to a small uncertain region.
To address this problem, we alternatively define the slice-level uncertainty as
v=0>,Ux)/O_, Y« + (), which is normalized by the segmented region size. ¢
is a small number for numerical stability. We iteratively fetch the slice S,,, with
the m-th highest v to ask for interactive refinement, where m = 1, 2, ..., and
the iteration terminates when m > M’, as shown in Fig. [I} M’ is a predefined
number, such as 60% of M according to the performance of the CNN on the
validation set. We also use an early termination strategy when refinement is not
needed for three consecutive fetched slices.

Interaction-based Level Set for Fast Refinement. For interactive refine-
ment, we use a Distance Regularized Level Set Evolution (DRLSE) [9] due to its
efficiency and extend it with an interaction-constraint term, which is named as
I-DRLSE. Let ¢ denote the level set function that is initialized as the signed dis-
tance transform of the initial segmentation result. We define an energy function
as F(¢) = aE.+BE,+\E;+uEy, where a, 5, A, u are weighting parameters. E,.,
FE,, E; and E; are the region, user-interaction, length and distance regulariza-
tion terms, respectively. By = [, 0c(¢(x))|Vo(x)|dx and Eq = [, p(|Vo(x)|)dx,
where §,. and p() are the smoothed Dirac delta function and double-well potential
function as in [9] respectively. As the target region in the fetal MRI image has
an inhomogeneous appearance that brings challenges to standard intensity-based
level set methods, we define the region term based on the foreground probability
map P obtained by MG-Net instead of the original image:

Er:/ (|P701|2He(¢(x))+|P702‘2(H€(7¢(x)>))dx (1)
2

where H, is the smoothed Heaviside function as in [9]. ¢; and ¢y are the av-
erage foreground probability inside and outside the current level set contour,
respectively. Our proposed user-interaction term is:

B, =~ [ (Ho()log(nx)) + H-0(x)log(1 () Jax (2
(9}

where n(x) is user-interaction-derived likelihood of pixel x being the foreground.
Let F and B represent the set of pixels specified as the foreground and back-
ground by the user interactions, respectively. Inspired by [16], we use g7 to rep-
resent the geodesic distance between x and F, and define 5(x) = e~ Cx /(e~% +
e‘Gf), where Gf = min(gf, D) and G = min(¢2, D) and D is a threshold
value to ensure that only a local region is affected by the interactions. We set
gl or gB as D when F or B is empty. E, is infinite if the segmentation results
conflict with the user interactions.

3 Experiments and Results

Data and Implementation. MRI scans of 35 fetuses in the second trimester
were collected by Single Shot Fast Spin Echo (SSFSE) with pixel size 0.74 mm-
1.58 mm and inter-slice spacing 3 mm-4 mm. Each fetus had three scans in
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axial, sagittal and coronal views respectively, leading to 105 stacks in total. We
randomly selected 72 stacks from 24 patients, 9 stacks from 3 patients and 24
stacks from 8 patients for training, validation and testing, respectively. Manual
segmentations of these images were used as the ground truth.

We implemented the CNNs in Pytorch on a Ubuntu desktop with an NVIDIA
GTX 1080 Ti GPU and developed a PyQt GUI for user interactions. -DRLSE
was implemented in Python and it ran on the CPU. To train MG-Net, we used
Dice loss [I0] and Adam optimizer with weight decay 10~°, mini-batch of 24
slices and learning rate 10~%. The training was ended when performance on
the validation set stopped to increase for 5k iterations. The group number N
in MG-Net was 4 and the channel number parameter C' in Fig. 2| was 16. For
interactive refinement, M’ was set to 0.6M as refinement was not needed for
more than half of the slices in the validation set. For I-DRLSE, the maximal
evolution step number was 200 and a=0.1, 8=0.5, A=0.3, x=0.005, D=4.0 based
on grid search on the validation set. The segmentation accuracy was measured
by Dice similarity and Average Symmetric Surface Distance (ASSD) between
segmentation results and the ground truth.

Table 1. Quantitative evaluation of different uncertainty estimation methods for fetal
brain segmentation before refinement. The values were measured at stack-level.

Method Efficiency Uncertainty Quality Segmentation Quality
Param(M) Runtime(s) [UEO(%) RVE(%) Dice(%) ASSD(mm)
U-Net [11] 11.51 0.31+0.09 |- - 91.54+5.87  4.31+2.45
MC Dropout [3][11.51 3.124+0.83 [36.17+5.31 42.64£36.94 (92.04£9.27  4.16x2.75
Ensemble [§] 11.51 1.564+0.42 |37.08+7.75 40.74+37.29 |92.05+5.72 4.074+2.37
Bayesian Net [4][11.51 0.314+0.09 [36.64+5.10 26.54+18.29 (90.24+7.39  4.87+2.82
MG-Net 4.86 0.29+0.08 [40.47+3.58 21.90+17.62|91.82+4.78 4.07+2.13

Initial Segmentation and Uncertainty Estimation. Our MG-Net was com-
pared with MC dropout [3] with 10 folds, ensemble [§] of 5 models, and a Bayesian
network [4] for uncertainty estimation. We implemented all these methods using
U-Net [I1I] as the backbone. To measure ability of the uncertainty to indicate
mis-segmentation, we used Uncertainty-Error Overlap (UEQ, i.e., Dice as in [5])
and Relative Volume Error (RVE) between thresholded uncertain region and
mis-segmented region. The optimal threshold value for each method was deter-
mined based on the validation set. Quantitative evaluation results are shown
in Table [1} Compared with ensemble of U-Net, our MG-Net obtains compara-
ble segmentation accuracy and higher uncertainty estimation quality. MG-Net
takes 0.29s in average for simultaneous automatic segmentation and uncertainty
estimation of a stack, which is far more efficient than MC dropout and model
ensemble and more suitable for interactive segmentation. The Bayesian network
method also obtains uncertainty estimation in a fast speed, but with a reduced
segmentation accuracy. Visual comparison in Fig. [3|shows that MG-Net obtains
better consistency between mis-segmentation and uncertain regions than the
other uncertainty estimation methods.
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In the first row: === segmentation ground truth In the second row: 0.0 05 10

MC Dropout Ensemble Bayesian Net MG-Net MC Dropout Ensemble Bayesian Net MG-Net
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Fig.3. Comparison of different methods for initial segmentation (1st row) and un-
certainty estimation (2nd row) that is normalized to [0, 1]. Red arrows highlight the
consistency between mis-segmentation (eye ball in (a) and lung in (b)) and uncertainty
obtained by MG-Net.

Refinement using Interactive Level Set. Our I-DRLSE was firstly validated
with slice-level refinement, and compared with: 1) CPU-based Graph Cu1E| as
implemented in [I5], and 2) training a refinement CNN (a.k.a., R-Net) [16] that
takes the initial segmentation and user interactions as input. We implemented
the R-Net using U-Net [II] as the backbone, and trained it with simulated in-
teractions on initial segmentation obtained by MG-Net following [16]. As not
all the slices in a stack require refinement, we randomly selected 100 obviously
mis-segmented slices from the test set, and used the same set of user inter-
actions on the initial segmentation for comparison. Fig. @(a) shows two cases
where over- and under-segmentation exist in the initial segmentation respec-
tively, which demonstrates that I-DRLSE obtains higher refinement accuracy
than Graph Cut and R-Net with the same initial segmentation and interactions.
Fig. [l|(b) shows a quantitative comparison of these refinement methods. It can
be observed that I-DRLSE leads to higher Dice scores and lower ASSD values
than Graph Cut and R-Net for refinement. The average slice-level machine time
for CPU-based I-DRLSE was 0.45s, which is slower than that of Graph Cut
(0.07s) and R-Net (0.12s), but still acceptable for fast response of user interac-
tions. The efficiency of I-DRLSE could be further improved by a GPU-optimized
implementation in the future.

Comparison of Different Interactive Frameworks. For stack-level seg-
mentation, our UGIR was compared with two variants: 1) UGIR(-U) denoting
that the user manually searches mis-segmentation slice-by-slice to provide in-
teractions (i.e., not guided by uncertainty) for refinement using I-DRLSE; 2)
UGIR(*) that denotes using the naive slice-level uncertainty v* to guide user
interactions. They were also compared with two existing interactive segmenta-

2 |Codefromthemaxflow-v3.01library:https://vision.cs.uwaterloo.ca/code/
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Fig. 4. Slice-level qualitative and quantitative comparisons of different methods for
refinement based on the same set of initial segmentation and user interactions.

tion methods: using Graph Cut [I] for interactive segmentation from scratch,
and DeeplGeoS [16] that uses two CNNs for initial segmentation and interactive
refinement, respectively. We re-implemented DeeplGeoS following the training
method in [I6]. One user employed these methods to segment the fetal brain
from the testing fetal MRI stacks respectively, where the interactions in a slice
could be given multiple times until the result was accepted. Quantitative evalu-
ation results are shown in Table [2| Compared with DeeplGeoS [I6], our UGIR
obtained similar final accuracy (p-value > 0.05 based on a paired t-test), but
reduced the runtime from 75.38s to 48.46s. By using uncertainty-guided user in-
teractions, UGIR improved the efficiency by near 30% from UGIR(-U). UGIR(*)
and UGIR took almost the same runtime, but UGIR achieved higher accuracy.

Table 2. Quantitative comparison of different interactive methods for stack-level seg-
mentation of the fetal brain.

Graph Cut [1]|DeeplGeoS [16]| UGIR(-U) | UGIR(*) UGIR
Dice (%) 93.17+3.15 95.03+3.07 |95.00+3.09 | 94.65+£3.28 | 94.83+3.22
ASSD (mm)| 2.844+1.18 2.72£1.74 2.73£1.12 2.75£1.17 | 2.70+1.15
Runtime (s)|214.544+58.73 | 75.384+42.67 |68.04+26.00{48.11+20.87|48.46+19.40

4 Conclusion

In this work, we propose a novel interactive segmentation framework using un-
certainty to efficiently guide user interactions for refining results obtained by
automatic CNNs. We introduce MG-Net based on grouped convolution to ob-
tain multiple segmentation predictions simultaneously with real-time uncertainty
estimation, which is used to suggest mis-segmented slices for user interactions,
avoiding unnecessary manual check of well-segmented slices and leading to im-
proved efficiency. A novel interactive level set -DRLSE is also proposed to obtain
refined results with spatial regularization. Experiments with fetal brain segmen-
tation from stacks of motion-corrupted fetal MRI slices show that the proposed
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interactive framework achieved high accuracy with fast runtime, and the uncer-
tainty information helped to improve the refinement efficiency by around 30%.
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