Skip to main content

A Kernelized Multi-level Localization Method for Flexible Shape Modeling with Few Training Data

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

Statistical shape models (SSMs) are a standard generative shape modeling technique and they are still successfully employed in modern deep learning-based solutions for data augmentation purposes or as shape priors. However, with few training samples they often fail to represent local shape variations. Recently, a new state-of-the-art method has been proposed to alleviate this problem via a multi-level model localization scheme using distance-based covariance manipulations and Grassmannian-based level fusion during model training. This method significantly improves a SSMs performance, but heavily relies on costly eigendecompositions of large covariance matrices. In this paper, we derive a novel computationally-efficient formulation of the original method using ideas from kernel theory and randomized eigendecomposition. The proposed extension leads to a multi-level localization method for large-scale shape modeling problems that preserves the key characteristics of the original method while also improving its performance. Furthermore, our extensive evaluation on two publicly available data sets reveals the benefits of Grassmannian-based level fusion in contrast to a method derived from the popular Gaussian Process Morphable Models framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Naive implementation of the eigendecomposition algorithm is assumed here.

  2. 2.

    https://brain-development.org/ixi-dataset/.

  3. 3.

    https://github.com/wilmsm/localizedssm.

References

  1. Alvarez, M.A., Rosasco, L., Lawrence, N.D., et al.: Kernels for vector-valued functions: a review. Found. Trends Mach. Learn. 4(3), 195–266 (2012)

    Article  Google Scholar 

  2. Avants, B., Tustison, N.: ANTs/ANTsR brain templates (2014). https://doi.org/10.6084/m9.figshare.915436.v2

  3. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. CVIU 61(1), 38–59 (1995)

    Google Scholar 

  4. Cootes, T.F., Taylor, C.J.: Data driven refinement of active shape model search. In: British Machine Vision Conference - BMVC, 1996, pp. 1–10 (1996)

    Google Scholar 

  5. Davies, R., Twining, C., Cootes, T., Waterton, J., Taylor, C.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  Google Scholar 

  6. Dölz, J., Gerig, T., Lüthi, M., Harbrecht, H., Vetter, T.: Error-controlled model approximation for gaussian process morphable models. J. Math. Imaging Vision 61(4), 443–457 (2019)

    Article  MathSciNet  Google Scholar 

  7. Ehrhardt, J., Schmidt-Richberg, A., Werner, R., Handels, H.: Variational registration - a flexible open-source itk toolbox for nonrigid image registration. Bildverarbeitung für die Medizin 2015, 209–214 (2015)

    Google Scholar 

  8. Feragen, A., Lauze, F., Hauberg, S.: Geodesic exponential kernels: when curvature and linearity conflict. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3032–3042 (2015)

    Google Scholar 

  9. van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006)

    Article  Google Scholar 

  10. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  11. Jud, C., Giger, A., Sandkühler, R., Cattin, P.C.: A localized statistical motion model as a reproducing kernel for non-rigid image registration. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 261–269. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_30

    Chapter  Google Scholar 

  12. Karimi, D., Samei, G., Kesch, C., Nir, G., Salcudean, S.E.: Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models. Int. J. Comput. Assist. Radiol. Surg. 13(8), 1211–1219 (2018)

    Article  Google Scholar 

  13. Kollias, D., Cheng, S., Ververas, E., Kotsia, I., Zafeiriou, S.: Deep neural network augmentation: generating faces for affect analysis. Int. J. Comput. Vision 128(5), 1455–1484 (2020). https://doi.org/10.1007/s11263-020-01304-3

    Article  Google Scholar 

  14. Lin, A., Wu, J., Yang, X.: A data augmentation approach to train fully convolutional networks for left ventricle segmentation. Magn. Reson. Imaging 66, 152–164 (2019)

    Article  Google Scholar 

  15. Lüthi, M., Gerig, T., Jud, C., Vetter, T.: Gaussian process morphable models. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1860–1873 (2018)

    Article  Google Scholar 

  16. Milletari, F., Rothberg, A., Jia, J., Sofka, M.: Integrating statistical prior knowledge into convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 161–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_19

    Chapter  Google Scholar 

  17. Ploumpis, S., Wang, H., Pears, N., Smith, W.A., Zafeiriou, S.: Combining 3d morphable models: A large scale face-and-head model. In: CVPR, pp. 10934–10943 (2019)

    Google Scholar 

  18. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 174(1), 71–74 (2000)

    Article  Google Scholar 

  19. Tang, Z., Chen, K., Pan, M., Wang, M., Song, Z.: An augmentation strategy for medical image processing based on statistical shape model and 3D thin plate spline for deep learning. IEEE Access 7, 133111–133121 (2019)

    Article  Google Scholar 

  20. Uzunova, H., Wilms, M., Handels, H., Ehrhardt, J.: Training CNNS for image registration from few samples with model-based data augmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Med Image Comput Comput Assist Interv - MICCAI 2017. LNCS, vol. 10433, pp. 223–231. Springer, Cham (2017)

    Google Scholar 

  21. Wang, S., Zhang, Z., Zhang, T.: Towards more efficient SPSD matrix approximation and CUR matrix decomposition. J. Mach. Learn. Res. 17(210), 1–49 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Staib, L.H.: Boundary finding with prior shape and smoothness models. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 738–743 (2000)

    Article  Google Scholar 

  23. Werner, R., Schmidt-Richberg, A., Handels, H., Ehrhardt, J.: Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: a comparison and evaluation study. Phys. Med. Biol. 59(15), 4247–4260 (2014)

    Article  Google Scholar 

  24. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  25. Wilms, M., Handels, H., Ehrhardt, J.: Multi-resolution multi-object statistical shape models based on the locality assumption. Med. Image Anal. 38(5), 17–29 (2017)

    Article  Google Scholar 

  26. Wilms, M., Handels, H., Ehrhardt, J.: Representative patch-based active appearance models generated from small training populations. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 152–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_18

    Chapter  Google Scholar 

  27. Yu, X., Zhou, F., Chandraker, M.: Deep deformation network for object landmark localization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 52–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_4

    Chapter  Google Scholar 

  28. Zhang, H., Li, Q., Sun, Z., Liu, Y.: Combining data-driven and model-driven methods for robust facial landmark detection. IEEE Trans. Inf. Forensics Secur. 13(10), 2409–2422 (2018)

    Article  Google Scholar 

  29. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR 2019, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Calgary’s Eyes High postdoctoral scholarship program and the River Fund at Calgary Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wilms .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3001 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilms, M., Ehrhardt, J., Forkert, N.D. (2020). A Kernelized Multi-level Localization Method for Flexible Shape Modeling with Few Training Data. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics