Skip to main content

Joint Spatial-Wavelet Dual-Stream Network for Super-Resolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

Super-Resolution (SR) techniques can compensate for the missing information of low-resolution images and further promote experts and algorithms to make accurate diagnosis decisions. Although the existing pixel-loss based SR works produce high-resolution images with impressive objective metrics, the over-smoothed contents that lose high-frequency information would disturb the visual experience and the subsequent diagnosis. To address this issue, we propose a joint Spatial-Wavelet super-resolution Network (SWD-Net) with collaborative Dual-stream. In the spatial stage, a Refined Context Fusion (RCF) is proposed to iteratively rectify the features by a counterpart stream with compensative receptive fields. After that, the wavelet stage enhances the reconstructed images, especially the structural boundaries. Specifically, we design the tailor-made Wavelet Features Adaptation (WFA) to adjust the wavelet coefficients for better compatibility with networks and Wavelet-Aware Convolutional blocks (WAC) to exploit features in the wavelet domain efficiently. We further introduce the wavelet coefficients supervision together with the traditional spatial loss to jointly optimize the network and obtain the high-frequency enhanced SR images. To evaluate the SR for medical images, we build a benchmark dataset with histopathology images and evaluate the proposed SWD-Net under different settings. The comprehensive experiments demonstrate our SWD-Net outperforms state-of-the-art methods. Furthermore, SWD-Net is proven to promote medical image diagnosis with a large margin. The source code and dataset are available at https://github.com/franciszchen/SWD-Net.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aeffner, F., et al.: Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. J. Pathol. Inform. 10, 9 (2019)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  3. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  4. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  5. Du, C., et al.: Orientation-aware deep neural network for real image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  6. Guo, T., Seyed Mousavi, H., Huu Vu, T., Monga, V.: Deep wavelet prediction for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 104–113 (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-srnet: A wavelet-based CNN for multi-scale face super resolution. In: ICCV, pp. 1689–1697 (2017)

    Google Scholar 

  9. Khan, S., Huh, J., Ye, J.C.: Deep learning-based universal beamformer for ultrasound imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 619–627. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_69

    Chapter  Google Scholar 

  10. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  12. Li, Z., et al.: A two-stage multi-loss super-resolution network for arterial spin labeling magnetic resonance imaging. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 12–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_2

    Chapter  Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and pattern recognition workshops, pp. 136–144 (2017)

    Google Scholar 

  14. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-cnn for image restoration. In: CVPR Workshops. pp. 773–782 (2018)

    Google Scholar 

  15. Mukherjee, L., Bui, H.D., Keikhosravi, A., Loeffler, A., Eliceiri, K.W.: Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images. J. Biomed. Optics 24(12), 126003 (2019)

    Article  Google Scholar 

  16. Peyré, G.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, USA (2009)

    Google Scholar 

  17. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4491–4500 (2017)

    Google Scholar 

  18. Shermeyer, J., Van Etten, A.: The effects of super-resolution on object detection performance in satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  19. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  20. Srivastav, V., Gangi, A., Padoy, N.: Human pose estimation on privacy-preserving low-resolution depth images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 583–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_65

    Chapter  Google Scholar 

  21. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  23. Upadhyay, U., Awate, S.P.: A mixed-supervision multilevel GAN framework for image quality enhancement. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 556–564. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_62

    Chapter  Google Scholar 

  24. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  27. Zhao, X., Zhang, Y., Zhang, T., Zou, X.: Channel splitting network for single MR image super-resolution. IEEE Trans. Image Process. 28(11), 5649–5662 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixuan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Guo, X., Yang, C., Ibragimov, B., Yuan, Y. (2020). Joint Spatial-Wavelet Dual-Stream Network for Super-Resolution. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics