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Abstract. Nucleus segmentation is an important task in medical image
analysis. However, machine learning models cannot perform well because
there are large amount of clusters of crowded nuclei. To handle this prob-
lem, existing approaches typically resort to sophisticated hand-crafted
post-processing strategies; therefore, they are vulnerable to the varia-
tion of post-processing hyper-parameters. Accordingly, in this paper, we
devise a Boundary-assisted Region Proposal Network (BRP-Net) that
achieves robust instance-level nucleus segmentation. First, we propose
a novel Task-aware Feature Encoding (TAFE) network that efficiently
extracts respective high-quality features for semantic segmentation and
instance boundary detection tasks. This is achieved by carefully consider-
ing the correlation and differences between the two tasks. Second, coarse
nucleus proposals are generated based on the predictions of the above
two tasks. Third, these proposals are fed into instance segmentation net-
works for more accurate prediction. Experimental results demonstrate
that the performance of BRP-Net is robust to the variation of post-
processing hyper-parameters. Furthermore, BRP-Net achieves state-of-
the-art performances on both the Kumar and CPM17 datasets. The code
of BRP-Net will be released at https://github.com/csccscescese/brpnetl

Keywords: Nucleus segmentation - Multi-task Learning - Instance Seg-
mentation.

1 Introduction

Nucleus segmentation is a crucial task in computational pathology, as it provides
rich spatial and morphometric information regarding nuclei. However, automatic
nucleus segmentation remains challenging. This is for a number of reasons: first,
a large amount of nucleus clusters exist, which results in crowded and over-
lapping nuclei; second, the boundary of nuclei in out-of-focus images tends to
be blurry, which increases the difficulty associated with separating crowded in-
stances; third, both nucleus appearance and shape exhibit dramatic variation,
which makes the segmentation task more difficult.


https://github.com/csccsccsccsc/brpnet

2 S. Chen et al.
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Fig.1. An example that illustrates the essential difference between the semantic
segmentation task and the instance boundary detection task. (a) original image; (b)
ground-truth for semantic segmentation; (c) ground-truth for nucleus boundary. The
boundaries that separates two overlapping instances, i.e. pixels colored in green in (c),
cannot be directly inferred from the semantic segmentation results in (b).

Many approaches to nucleus segmentation have been proposed. One popular
scheme is based on the use of boundary detection [1I2J3]. These approaches sub-
tract instance boundaries from semantic segmentation results and then employ
complex post-processing rules to obtain specific instances. In order to obtain the
instance boundaries, DCAN [I] adopted two decoders for U-Net, one for semantic
segmentation and another for instance boundary detection. No interactions take
place between the two decoders. To make use of their correlation, BES-Net [2]
and CIA-Net [3] further introduced uni-directional and bi-directional informa-
tion transmission, respectively, which means one decoder obtains extra features
from the other one. There are two key downsides of the above approaches. First,
as they adopt a shared encoder for both tasks, they consequently underesti-
mate the essential differences between tasks in feature learning; for example,
the boundaries in Fig. that separate two overlapping instances cannot be
directly inferred from the semantic segmentation results in Fig. Second, be-
cause these approaches adopt complex post-processing rules, their performance
is sensitive to the variation of post-processing hyper-parameters.

Another popular strategy used to separate crowded instances is the distance-
based approach [4/5]. For example, DIST [4] predicted the distance between each
foreground pixel and its nearest background pixel, while HoVer-Net [5] enriched
prediction by considering distances in both the horizontal and vertical direc-
tions. Subsequently, these works apply the watershed algorithm to the predicted
distance maps to obtain instances. However, one downside of this approach is
that the watershed algorithm may be sensitive to the noise in the distance maps.
Finally, clustering-based methods predict the spatial location of the associated
instance for each foreground pixel [6]. These instances are separated by clustering
the predicted location coordinates.

In this paper, we propose a novel framework for nucleus segmentation, re-
ferred to as Boundary-assisted Region Proposal Network (BRP-Net). Similar to
Mask R-CNN [7], BRP-Net comprises two stages: one stage to obtain instance
proposals and another for proposal-wise segmentation. In the first stage, we im-
plement the boundary detection-based scheme to obtain instance proposals. This
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Fig. 2. Overview of BRP-Net. BRP-Net comprises two stages: one stage to obtain
instance proposals and another for proposal-wise segmentation.

can be contrasted with Mask R-CNN [7], which predicts rectangular proposals
directly from feature maps. As was demonstrated in [I6], crowded instances re-
sult in bounding boxes with significant overlap; this means a single bounding
box can be associated with multiple instances, consequently affecting the opti-
mization quality of the network. Moreover, we further propose the Task-aware
Feature Encoding (TAFE) network, which efficiently extracts high-quality fea-
tures for semantic segmentation and instance boundary detection tasks. TAFE
aids BRP-Net in robustly obtaining instance proposals. The second stage refines
the segmentation result for each proposal, which enables BRP-Net to be robust
to the variation of post-processing hyper-parameters in TAFE. Extensive exper-
iments are conducted on two publicly available nucleus segmentation datasets,
from which we can conclude that BRP-Net consistently achieves state-of-the-art
performance on both datasets.

2 Method

The overall framework of BRP-Net is presented in Fig. [2} This framework in-
cludes two stages: one for obtaining instance proposals and another for proposal-
wise segmentation. The first stage adopts a similar pipeline to CIA-Net [3], and
the second one aims to refine the segmentation results of the first stage in a
proposal-wise manner.

2.1 Region Proposal Generation

We adopt a boundary detection-based scheme to obtain high-quality region pro-
posals. Following the post-processing rules outlined in [TJ3], instance boundaries
are subtracted from the predictions of semantic segmentation. Subsequently,
connected component analysis is applied to produce instance proposals. Extant
approaches have integrated semantic segmentation and instance boundary de-
tection tasks into one model [12/3]; however, as they adopt a shared encoder for
both tasks, they may underestimate their essential differences regarding feature
learning, as is analyzed in Sec.[I] One intuitive solution would be adopting inde-
pendent encoders for the two tasks. However, this strategy increases the model
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Fig. 3. Architecture details of TAFE. The number of channels in F; is set to 256
consistently. Feature maps produced by both encoders are fused in FFMs to make use
of their correlation. For simplicity, only one FFM is shown and the other two FFMs
are ignored in this figure. (Best viewed in color).

complexity and also completely ignores their correlation. Accordingly, we pro-
pose a novel Task-aware Feature Encoding (TAFE) network capable of efficiently
extracting high-quality features for each of these tasks.

Fig. [3] presents the architecture of TAFE. First, nucleus images are fed into
a single backbone encoder to extract feature maps that are {1, 1/2, 1/4, 1/8}
of the original image size. The structure of the backbone encoder is provided in
the supplementary file. Subsequently, each of them is passed through one un-
shared 1 x 1 convolutional layer to obtain F;*/ and F'". F’* and F'? are
fed into Task-specific Encoders (TSE), which are designed for the semantic seg-
mentation and instance boundary detection tasks, respectively. In each encoder,
feature maps after down-sampling are merged with an F; of the same size via
element-wise summation. The merged features are then passed through one 3 x 3
convolutional layer to generate E;. Similar to CIA-Net [3], deep supervision is
applied and the auxiliary classifiers take E; as inputs. Moreover, inspired by
the Information Aggregation Modules [3], we propose the light-weight Feature
Fusion Modules (FFMs), which is based on residual learning to aggregate infor-
mation in E;* and E™?. In the experimentation section, we demonstrate the
superiority of FFMs. FFMs are helpful for making use of the correlation as well
as reserving the differences between both tasks. Outputs of each FFM are fed
into two shallow decoders via element-wise summation. The two decoders are
used for the semantic segmentation task and the instance boundary detection
task. Each decoder contains three BN-ReLU-Conv layers.

2.2 Proposal-wise Segmentation

The first stage of BRP-Net, i.e. TAFE, adopts hand-crafted post-processing rules
to obtain instance proposals. Accordingly, the quality of proposals is affected by
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Fig. 4. The two networks in the proposal-wise segmentation stage adopt the same
architecture. Each layer in the network includes one dense block that consists of four
33 convolutional layers. Growth rates of the four dense blocks are set to 16, 32, 64, and
128, respectively. The number below each group of feature maps denotes the number
of channels. (Best viewed in color).

post-processing hyper-parameters. To address this problem, we propose a second
stage for BRP-Net to facilitate more robust segmentation.

We crop one square patch containing each proposal with a minimal margin
of 12 pixels on each side. Because the patches vary dramatically in size, we
group them into small and large patches with a threshold of Sg according to
their length. Then, small and large patches are resized to SgxSg and Sp xSy,
respectively. Finally, we train one network for the small and another for the large
patches. These two networks have the same architecture, the details of which are
illustrated in Fig. [4l Inputs to the model include the patch, and the probability
maps that are predicted by the semantic segmentation and boundary detection
tasks in the first stage. To relieve the influence of background, elements in the
probability maps that fall outside of the dilated proposal are set to zero. The
dilation rate is set to 2 pixels.

During training, each proposal is matched to a ground-truth instance depend-
ing on their Intersection over Union (IoU). For proposals with an IoU larger than
7, their label maps are set with reference to the matched ground-truth instance;
otherwise, the proposals are considered to be false-positive predictions. There-
fore, all elements in their label maps are set to zero (denoting background).

2.3 Inference

During the inference process, nucleus images are fed into BRP-Net. Semantic
segmentation and instance boundary detection results are produced by TAFE.
Then, post-processing operations in [II3] are implemented to obtain instance pro-
posals. Finally, patches containing these proposals are extracted and respectively
fed into proposal-wise segmentation networks for robust instance segmentation.

3 Experiments

We conduct experiments on two publicly available datasets. The first is a multi-
organ nucleus dataset [8/9], referred to as Kumar, which contains 30 Hematoxylin
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and Eosin (H&FE) stained images with resolution of 1000 x 1000. They are di-
vided into a training set of 16 images and a testing set of 14 images according to
the same protocol used in previous works [8I3J56]. In the testing set, 8 images
are from 4 organs in the training set (seen organ), and the remained 6 images
are from 3 organs that do not appear in the training set (unseen organ). The sec-
ond dataset is Computational Precision Medicine Dataset (CPM17) [10], which
contains 32 images for training and 32 images for testing.

Evaluation metrics for the two datasets are different. In the Kumar dataset,
the main metric is the Average Jaccard Index (AJI) [8]. We also report the F1-
Score to measure the instance detection performance. In CPM17, we use the same
metrics as used in [I0], i.e. the DICE coefficient (DICE 1) and Ensemble Dice
(DICE 2). DICE 1 measures the overall overlap between the predictions and the
ground truth, and DICE 2 measures the average overlap between the predictions
and their matched ground truth instances. Besides, in order to better compare
with one state-of-the-art work [5], we also report AJI in the experiments.

3.1 Implementation Details

We first perform stain normalization [12] to reduce the color differences between
the stained images. In the next step, we normalize each image by subtracting
the mean and dividing by the standard deviation of the training set. Training
data are augmented by random cropping, flipping, color jittering, blurring and
elastic transformation. We crop images to a size of 256 x 256 pixels before using
them as the input of BRP-Net.

In a similar way to CIA-Net [3], we adopt DenseNet [13] as TAFEs backbone
encoder and initialize its parameters using a single pretrained model ] We also
adopt both the Smooth Truncated Loss [3] and Soft Dice Loss [I7] for the opti-
mization of both tasks in TAFE. Weight of the Soft Dice Loss is set to 0.5. We
use the AdamW [14] optimizer for training. The number of training epochs is
set to 600. The learning rate is initially set to 0.0003, and decreases according
to the cosine annealing schedule [14]. The learning rate decreases to zero in 40
epochs and is then reset. At each restart, the new start learning rate is set to be
one half of the previous rate, while the new period lasts for twice as long as the
previous one.

Finally, Sg and S}, are set to be 48 and 176 pixels, respectively. Training set-
tings for the proposal-wise segmentation networks are similar to those of TAFE.
But we use Focal Loss [I5] for optimization and the training lasts for only ten
epochs. The learning rate is set to 0.0003 initially, and decreases according to
the cosine annealing schedule without restart.

3.2 Ablation Study

* The pretrained model can be downloaded from https://download.pytorch.org/
models/densenet121-a639ec97.pth
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Table 1. Performance comparisons between the baseline, baseline+FFMs, and TAFE.

Network AJT (%) F1-Score (%)
seen unseen all seen unseen all
Baseline 61.15 62.58 61.76 82.99 84.08 83.46
Baseline+FFMs 61.41 63.39 62.26 82.35 84.90 83.44
TAFE 61.96 63.84 62.77 | 82.81 84.34 83.47
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Fig. 5. Evaluation on different settings for BRP-Net. (a) The influence of different
dilation radii in the post-processing step of TAFE. (b) The choice of IoU thresholds 7
and different loss functions for the second stage of BRP-Net.

Effectiveness of TAFE We compare the performance of TAFE with a base-
line network that is similar to existing boundary detection-based methods [3].
In brief, it shares encoder for the semantic segmentation and instance bound-
ary detection tasks. The two tasks still own respective decoders equipped with
TAMs. For fair comparison, the baseline has the same number of parameters as
TAFE. Table [I] presents the performance of TAFE and baseline. We also equip
IAMs with the same residual learning scheme as FFMs and report the perfor-
mance of baseline again, which is referred to as ‘baseline+FFMs’ in the table.
Architecture details of both the baseline and baseline+FFMs are provided in the
supplementary file. It can be seen from our results that TAFE achieves higher
AJI performance on both the seen and unseen organ datasets. It is also clear
that the residual learning scheme in FFMs is helpful. This may be because this
scheme better highlights the differences between the two tasks, as illustrated in
Fig.|3] The comparison justifies the effectiveness of TAFE and the FFM modules.

Evaluation on Post-Processing Settings in TAFE Existing boundary
detection-based methods are sensitive to the post-processing hyper-parameters,
particularly the dilation radius for recovering the subtracted instance bound-
aries [II3]. We conduct experiments to evaluate the influence of different dilation
radii on both TAFE and the entire BRP-Net pipeline. Results are presented in
Fig. It can be found that due to the proposal-wise segmentation stage,
BRP-Net is highly robust to the value of dilation radius. By contrast, the per-
formance of single-stage method is less stable.
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Evaluations on Settings for Proposal-wise Segmentation We evaluate
the influence of IoU thresholds 7 and different loss functions on the second stage
of BRP-Net. Experimental results are presented in Fig. It is shown that
the performance of BRP-Net is generally robust to the value of 7, as well as that
focal loss [I5] slightly outperforms cross-entropy loss. According to the evaluation
results, we select focal loss for training and set 7 as 0.5 for the second stage.

Table 2. Quantitative comparisons between BRP-Net and existing methods.

(a) Comparisons on the Kumar database [§].

Network AJT (%) F1-Score (%)
seen unseen all seen unseen all
CNN3 [§] 51.54 49.89 50.83 82.26 83.22 82.67
DIST [4] 55.91 56.01 55.95 - - -
Mask R-CNN [7] 59.78 55.31 57.86 81.07 82.91 81.86
CIA-Net [3] 61.29 63.06 62.05 82.44 84.58 83.36
HoVer-Net [5] - - 61.80 - - -
Spa-Net [6] 62.39 63.40 62.82 82.81 84.51 83.53
BRP-Net (ours) 63.07 65.75 64.22 83.46 85.26 84.23

(b) Comparisons on CPM17 database [10]

Network Dice 1 (%) | Dice 2 (%) | AJI (%)
DRAN [10] 86.2 70.3 68.3
HoVer-Net [5] 86.9 - 70.5
Micro-Net [11] 85.7 79.6 -
BRP-Net (ours) 87.7 79.5 73.1

3.3 Comparisons with State-of-the-art Methods

Comparisons between BRP-Net and state-of-the-art methods on the Kumar
database are reported in Table It can be seen that BRP-Net achieves both
the highest AJI and the highest F1-Score among all the methods. In particular,
BRP-Net outperforms the previous best method, i.e. SPA-Net, by 0.68%, 2.35%,
and 1.40% on the seen organ, unseen organ, and all testing data, respectively.
We also provide qualitative comparisons in the supplementary file.

We further conduct comparisons on CPM17 database [I0] and summarize
the results in Table 2(b)l From the results, we can see that BRP-Net contin-
ues to achieves state-of-the-art performance. Its performance in Dice 1 and AJI
outperforms existing approaches by 0.8% and 2.6%, respectively. The above com-
parisons demonstrate the effectiveness of BRP-Net.
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4 Conclusion

In this paper, we propose the Boundary-assisted Region Proposal Network (BRP-
Net) for nucleus segmentation. BRP-Net contains one stage designed for obtain-
ing instance proposals and a second stage for proposal-wise segmentation. To
separate crowded nuclei, we adopt a boundary detection-based scheme for the
first stage. We further propose a novel Task-specific Feature Encoding network
with Feature Fusion Modules to achieve this goal. The second stage is further
introduced to segment proposals of various size, and enables BRP-Net to be
robust to the variation of post-processing hyper-parameters in the first stage.
Finally, BRP-Net achieves strong performance on both the Kumar and CPM17
datasets.

Acknowledgement

Changxing Ding is supported by NSF of China under Grant 61702193 and
U1801262, the Science and Technology Program of Guangzhou under Grant
201804010272, the Program for Guangdong Introducing Innovative and En-
trepreneurial Teams under Grant 2017ZT07X183, and the Fundamental Re-
search Funds for the Central Universities of China under Grant 2019JQO01.
Dacheng Tao is supported by Australian Research Council Project FL-170100117.

References

1. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for
accurate gland segmentation. In: Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 24872496 (2016)

2. Oda, H., Roth, H.R., Chiba, K., Sokoli¢, J., Kitasaka, T., Oda, M., Hinoki, A.,
Uchida, H., Schnabel, J.A., Mori, K.: Besnet: boundary-enhanced segmentation of
cells in histopathological images. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 228236. Springer (2018)

3. Zhou, Y., Onder, O.F., Dou, Q., Tsougenis, E., Chen, H., Heng, P.A.: Cia-net:
Robust nuclei instance segmentation with contour-aware information aggregation.
In: International Conference on Information Processing in Medical Imaging. pp.
682693. Springer (2019)

4. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology
images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2),
448459 (2018)

5. Graham, S., Vu, Q.D., Raza, S. E A., Azam, A., Tsang, Y. W., Kwak, J. T., Rajpoot,
N.: Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue
histology images. Medical Image Analysis, 58, 101563 (2019).

6. Koohbanani, N.A., Jahanifar, M., Gooya, A., Rajpoot, N.: Nuclear instance seg-
mentation using a proposal-free spatially aware deep learning framework. In: Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention. pp. 622-630. Springer (2019)



10 S. Chen et al.

7. He, K., Gkioxari G., Dollar P., Girshick R.: Mask r-cnn. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 29802988 (2017)

8. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset
and a technique for generalized nuclear segmentation for computational pathology.
IEEE Trans. Med. Imaging 36(7), 15501560 (2017)

9. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med.
Imaging. https://doi.org/10.1109/TMI1.2019.2947628

10. Vu, Q.D., et al.: Methods for segmentation and classification of digital microscopy
tissue images. Frontiers in bioengineering and biotechnology, 7, 53 (2019)

11. Raza, S. E A., Cheung, L., Shaban, M., Graham, S., Epstein, D., Pelengaris, S.,
Khan, M., Rajpoot, N.M.: Micro-Net: A unified model for segmentation of various
objects in microscopy images. Medical Image Analysis, 52, 160173 (2019)

12. Macenko M., Niethammer M., Marron J S, et al.: A method for normalizing his-
tology slides for quantitative analysis. In: Proceedings of IEEE International Sym-
posium on Biomedical Imaging, pp. 11071110 (2009)

13. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pp. 4700-4708 (2017)

14. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv
preprint arXiv:1711.05101 (2017)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollr, P.: Focal loss for dense object de-
tection. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 2980-2988 (2017).

16. Ding, H., Qiao, S., Shen, W., Yuille, A.: Shape-aware Feature Extraction for In-
stance Segmentation. arXiv preprint arXiv:1911.11263 (2019).

17. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks
for volumetric medical image segmentation. In: International Conference on 3D
Vision (3DV), pp. 565571. IEEE (2016)


https://doi.org/10.1109/TMI.2019.2947628
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1911.11263

Supplementary Material

1 Architecture Details of the Backbone Encoder
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Fig. 1. Architecture details of the backbone encoder in Sec. 2.1 of the main paper. We
adopt DenseNet121 as the backbone. The four dense blocks contain 6, 12, 18 and 24
convolutional layers, respectively, and the growth rate is set to 32. The stride of the
first 7 x 7 convolutional layer is set to 1 and the first max-pooling layer is removed.
Therefore, sizes of the obtained feature maps from the four dense blocks are 1, 1/2,
1/4 and 1/8 of the input image size, respectively. (Best viewed in color).

2 Architecture Details of the Baseline

¢
ﬁﬁ rr'Eﬂ

(b) IAM Core

[ Seamentaton Features [ Boundary Features 5 Rel.UBN-1x1 Cony. B ReLU-BN-3x3 Comy £ 1x1 Cony £ 3x3 Cony B 212 Bl

(a) Baseline Model

Fig. 2. Architecture details of the baseline and ‘baseline+FFMs’ in Table 1 of the main
paper. Their difference is that the former adopts Information Aggregation Modules
(TAMs), while the latter equips IAMs with the same residual learning scheme as Feature
Fusion Modules (FFMs). ‘IAM Core’ refers to the core components for information
aggregation in TAM, as illustrated in (b). The baseline and ‘baseline+FFMs’ has the
same number of parameters as TAFE. (Best viewed in color).
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3 Qualitative Comparisons

(a) Image (b) Ground (c) CIA-Net (d) TAFE (e) BRP-Net
Patch Truth

Fig. 3. Qualitative comparisons between different models. From left to right in each
row: the original image, ground truth segmentations, the predictions by CIA-Net [3],
TAFE, and BRP-Net. (Best viewed in color).
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