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Abstract. Segmentation and accurate localization of nuclei in histo-
pathological images is a very challenging problem, with most existing
approaches adopting a supervised strategy. These methods usually rely
on manual annotations that require a lot of time and effort from medical
experts. In this study, we present a self-supervised approach for seg-
mentation of nuclei for whole slide histopathology images. Our method
works on the assumption that the size and texture of nuclei can deter-
mine the magnification at which a patch is extracted. We show that
the identification of the magnification level for tiles can generate a pre-
liminary self-supervision signal to locate nuclei. We further show that
by appropriately constraining our model it is possible to retrieve mean-
ingful segmentation maps as an auxiliary output to the primary mag-
nification identification task. Our experiments show that with standard
post-processing, our method can outperform other unsupervised nuclei
segmentation approaches and report similar performance with supervised
ones on the publicly available MoNuSeg dataset. Our code and models
are available online?? to facilitate further research.

Keywords: Pathology, Whole Slide Images, Nuclei Segmentation, Deep
Learning, Self-Supervision, Attention Models

1 Introduction

Histology images are the gold standard in diagnosing a considerable number
of diseases including almost all types of cancer. For example, the count of nu-
clei on whole-slide images (WSIs) can have diagnostic significance for numer-
ous cancerous conditions [20]. The proliferation of digital pathology and high-
throughput tissue imaging leads to the adoption in clinical practice of digitized

?? https://github.com/msahasrabudhe/miccai2020_self_sup_nuclei_seg
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histopathological images that are utilized and archived every day. Such WSIs
are acquired from glass histology slides using dedicated scanning devices after
a staining process. In each WSI, thousands of nuclei from various types of cell
can be identified. The detection of such nuclei is crucial for the identification
of tissue structures, which can be further analyzed in a systematic manner and
used for various clinical tasks. Presence, extent, size, shape, and other morpho-
logical characteristics of such structures are important indicators of the severity
of different diseases [6]. Moreover, a quantitative analysis of digital pathology is
important, to understand the underlying biological reasons for diseases [21].

Manual segmentation or estimation of nuclei on a WSI is an extremely
time consuming process which suffers from high inter-observer variability [1].
On the other hand, data-driven methods that perform well on a specific histo-
pathological datasets report poor performance on other datasets due again to
the high variability in acquisition parameters and biological properties of cells
in different organs and diseases [13]. To deal with this problem, datasets inte-
grating different organs [13, 4] based on images from The Cancer Genome Atlas
(TCGA) provide pixelwise annotations for nuclei from variety of organs. Yet,
these datasets provide access to only a limited range of annotations, making the
generalization of these techniques ambiguous and emphasizing the need for novel
segmentation algorithms without relying purely on manual annotations.

To this end, in this paper, we propose a self-supervised approach for nuclei
segmentation without requiring annotations. The contributions of this paper are
threefold: (i) we propose using scale classification as a self-supervision signal
under the assumption that nuclei are a discriminative feature for this task; (ii)
we employ a fully convolutional attention network based on dilated filters that
generates segmentation maps for nuclei in the image space; and (iii) we investi-
gate regularization constraints on the output of the attention network in order
to generate semantically meaningful segmentation maps.

2 Related Work

Hematoxylin and eosin (H&E) staining is one of the most common and inexpen-
sive staining schemes for WSI acquisition. A number of different tissue structures
can be identified in H&E images such as glands, lumen (ducts within glands), adi-
pose (fat), and stroma (connective tissue). The building blocks of such structures
are a number of different cells. During the staining process, hematoxylin renders
cell nuclei dark blueish purple and the epithelium light purple, while eosin ren-
ders stroma pink. A variety of standard image analysis methods are based on
hematoxylin in order to extract nuclei [24, 2] reporting very promising results,
albeit evaluated mostly on single organs. A lot of research on the segmentation
of nuclei in WSI images has been presented over the past few decades. Method-
ologies that integrate thresholding, clustering, watershed algorithms, active con-
tours, and variants along with a variety of pre- and post-processing techniques
have been extensively studied [8]. A common problem among the aforementioned
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Fig. 1. A diagram of our approach. Each patch I is fed to the attention network F
generating an attention map A. The “attended” image J is then given to the scale
classification network G. Both networks are trained in an end-to-end fashion. s, p, and
d for convolution blocks refer to stride, padding, and dilation.

algorithmic approaches is the poor generalization across the wide spectrum of
tissue morphologies introducing a lot of false positives.

To counter this, a number of learning-based approaches have been inves-
tigated in order to better tackle the variation over nuclei shape and color.
One group of learning-based methods includes hand-engineered representations
such as filter bank responses, geometric features, texture descriptors or other
first order statistics paired with a classification algorithm [12, 18]. Recent suc-
cess of deep learning-based methods and the introduction of publicly available
datasets [13, 4] formed a second learning-based group of supervised approaches.
In particular, [13] summarises some of these supervised approaches that are
developed for multi-organ nuclei segmentation, most of them based on convo-
lutional neural networks. Among them the best performing method proposes a
multi-task scheme based on an FCN [14] architecture using a ResNet [9] backbone
encoder with one branch to perform nuclei segmentation and a second one for
contour segmentation. Yet, the emergence of self-supervised approaches in com-
puter vision [17, 5] has not successfully translated to applications in histopathol-
ogy. In this paper, we proposed a self-supervised method for nuclei segmentation
exploiting magnification level determination as a self-supervision signal.

3 Methodology

The main idea behind our approach is that given a patch extracted from a WSI
viewed at a certain magnification, the level of magnification can be ascertained
by looking at the size and texture of the nuclei in the patch. By extension, we
further assume that the nuclei are enough to determine the level of magnification,
and other artefacts in the image are not necessary for this task.

Contrary to several concurrent computer vision pipelines which propose to
train and evaluate models by feeding images sampled at several scales in order
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for them to learn multi-scale features [9] or models which specifically train for
scale equivariance [23], we posit learning a scale-sensitive network which specif-
ically trains for discriminative features for correct scale classification??. Given
a set of WSIs, we extract all tissue patches (tiles) from them at a fixed set of
magnifications C. We consider only these tiles, with the “ground-truth” knowl-
edge for each tile being at what magnification level it was extracted. Following
our earlier reasoning, if nuclei in a given tile I ∈ R3×H×W are enough to predict
the level of magnification, we assume that there exists a corresponding attention
map A, so that A � I is also enough to determine the magnification, where �
represents element-wise multiplication, and A ∈ [0, 1]1×H×W is a single channel
attention image that focuses on the nuclei in the input tile (Figure 1).

We design a fully-convolutional feature extractor F to predict the attention
map A from the patch I. Our feature extractor consists of several layers of
convolution operations with a gradual increase in the dilation of the kernels so
as to incorporate information from a large neighborhood around every pixel.
This feature extractor F regresses a confidence map a = F (I) ∈ R1×H×W ,
which is activated by a compressed and biased sigmoid function so that A =
σ (a). In order to force the attention map to focus only on parts of the input
patch, we apply a sparsity regularizer on A. This regularizer follows the idea and
implementation of a concurrent work on unsupervised separation of nuclei and
background [10]. Sparsity is imposed by picking the η-th percentile value in the
confidence map a for all images in the batch, and choosing a threshold τ equal
to the average of this percentile over an entire training batch. Formally,

τ =
1

B

B∑
b=1

a
(η)
b , (1)

where a
(η)
b represents the

(
η

100 ·HW
)
-th largest value in the confidence map ab

for the b-th image in the training batch of B images. The sigmoid is then defined
as σ(x) = 1

1+exp(−r(x−τ)) . It is compressed in order to force sharp transitions

in the activated attention map, the compression being determined by r. We use
r = 20 in our experiments.

The “attended” image J = A � I is now enough for magnification or scale
classification. We train a scale classification network G, which we initialize as
a ResNet-34 [9], to predict the magnification level for each input tile J . The
output of this network is scores for each magnification level, which is converted
to probabilities using a softmax activation. The resulting model (Figure 1) is
trainable in an end-to-end manner. We use negative log-likelihood to train the
scale classification network G, and in turn the attention network F—

Lscale (p̂, l) = − log p̂l ; p̂i = [softmax (ŝ)]i ; ŝ = G (J) ; 1 ≤ i ≤ NC , (2)

where l is the scale ground-truth, and NC = |C| .
?? Note that the terms scale (in the context of computer vision) and magnification (in

the context of histopathology) are semantically equivalent and used interchangeably.
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3.1 Smoothness Regularization

We wish A to be semantically meaningful and smooth with blobs focusing on
nuclei instead of having high frequency components. To this end, we incorporate
a smoothness regularizer on the attention maps. The smoothness regularizer
attempts simply to reduce the high frequency component that might appear in
the attention map because of the compressed sigmoid. We employ a standard
smoothness regularizer based on spatial gradients defined as

Lsmooth =
1

(H − 1)(W − 1)

∑
i,j

‖Ai+1,j −Ai,j‖1 + ‖Ai,j+1 −Ai,j‖1 . (3)

3.2 Transformation Equivariance

Equivariance is a commonly used constraint on feature extractors for imposing
semantic consistency [22, 3]. A feature extractor f is equivariant to a transfor-
mation g if g is replicated in the feature vector produced by f , i.e., f(g(x)) =
g(f(x)) , for an image x. In the given context, we want the attention map ob-
tained from F to be equivariant to a set T of certain rigid transforms. We impose
equivariance to these transformations through a simple mean squared error loss
on A. Formally, we define the equivariance constraint as

Lequiv =
1

HW
‖σ (t (F (I)))− σ (F (t (I)))‖22 , (4)

for a transformation t ∈ T . We set T to include horizontal and vertical flips,
matrix transpose, and rotations by 90, 180, and 270 degrees.Each training batch
uses a random t ∈ T .

3.3 Training

The overall model is trained in an end-to-end fashion, with Lscale being the guid-
ing self-supervision loss. For models incorporating all constraints, i.e., smooth-
ness, sparsity, and equivariance, the total loss is

Ltotal = Lscale + Lsmooth + Lequiv . (5)

We refer to a model trained with all these components together as Mproposed.
We also test models without one of these losses to demonstrate how each loss
contributes to the learning. More specifically, we define the following models:

1. M¬smooth: does not include Lsmooth.
2. M¬equiv: does not include Lequiv.
3. M¬sparse: does not include a sparsity regularizer on the attention map. In

this case, the sigmoid is simply defined as σ(x) = 1
1+exp(−x) .

4. M¬WSI: a model which does not sample images from WSIs, but instead from
a set of pre-extracted patches (see Section 4.1).

We set the sparsity parameter η empirically in order to choose the 93-rd
percentile value for sparsity regularization. This is equivalent to assuming that,
on an average, 7% of the pixels in a tile represent nuclei.
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3.4 Post Processing, Validation, and Model Selection

In order to retrieve the final instance segmentation from the attention image we
employ a post processing pipeline that consists of 3 consequent steps. Firstly, two
binary opening and closing morphological operations are sequentially performed
using a coarse and a fine circular element (r = 2, r = 1). Next, the distance
transform is calculated and smoothed using a Gaussian blur (σ = 1) on the new
attention image and the local maxima are identified in a circular window (r = 7).
Lastly, a marker driven watershed algorithm is applied using the inverse of the
distance transform and the local maxima as markers.

As our model does not explicitly train for segmentation of nuclei, we require
a validation set to determine which model is finally best-suited for our objective.
To this end, we record the Dice score between the attention map and the ground
truth on the validation set (see Section 4.1) at intermediate training epochs,
and choose the epoch which performs the best. We noticed that, in general,
performance increases initially on the validation, but flattens after ∼30 epochs.

4 Experimental Setup and Results

4.1 Dataset

For the purposes of this study we used the MoNuSeg database [13]. This dataset
contains thirty 1000× 1000 annotated patches extracted from thirty WSIs from
different patients suffering from different cancer types from The Cancer Genomic
Atlas (TCGA). We downloaded the WSIs corresponding to patients included in
the training split and extracted tiles of size 224× 224 from three different mag-
nifications, namely 10× , 20× , and 40× . For each extracted tile, we perform a
simple thresholding in the HSV color space to determine whether the tile contains
tissue or not. Tiles with less then 70% tissue cover are not used. Furthermore,
a stain normalization step was performed using the color transfer approach de-
scribed in [19]. Finally, a total of 1 125 737 tiles from the three aforementioned
scales were selected and paired with the corresponding magnification level. The
MoNuSeg train and test splits were employed, while the MoNuSeg train set was
further split into training and validation as 19 and 11 examples, respectively.
The annotations provided by MoNuSeg on the validation set were utilized for
determining the four post processing parameters (Section 3.4) and for the final
evaluation. For the model M¬WSI, which does not use whole slide images, we use
the MoNuSeg patches instead for training, using the same strategy to split train-
ing and validation. We further evaluated the performance of our model that was
trained on the MoNuSeg training set on the TNBC[15] and CoNSeP[7] datasets.

4.2 Implementation

We use the PyTorch [16] library for our code. We use the Adam [11] optimizer
in all our experiments, with an initial learning rate of 0.0002 , a weight decay of
0.0001 , and β1 = 0.9 . We use a batch size of 32 , 100 minibatches per epoch, and
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Fig. 2. Input, intermediate results and output of the post processing pipeline. From
left to right: the input image; the attention map obtained from Mproposed after the
post-processing; the distance transform together with local maxima over-imposed in
red; and the final result after the marker driven watershed.

randomly crop patches of size 160×160 from training images to use as inputs to
our models. Furthermore, as there is a high imbalance among the number of tiles
for each of the magnification level (images are about 4 times more in number for
a one step increase in the magnification level), we force a per-batch sampling of
images that is uniform over the magnification levels, i.e., each training batch is
sampled so that images are divided equally over the magnification levels. This
is important to prevent learning a biased model.

4.3 Results

To highlight the potentials of our method we compare its performance with
supervised and unsupervised methods on the MoNuSeg testset presented in [13].
In particular, in Table 1 we summarize the performance of three supervised
methods (CNN2,CNN3 and Best Supervised) and two completely unsupervised
methods (Fiji and CellProfiler) together with different variations of our proposed
method. Our method outperforms the unsupervised methods, and it reports
similar performance with CNN2[13] and CNN3[13] on the same dataset. While
it reports lower performance than the best supervised method from [13], our
formulation is quite modular and able to adapt multi-task schemes similar to
the one adapted by the winning method of [13].

On the TNBC and CoNSeP datasets, our method is strongly competitive
among the unsupervised methods. We should emphasize that these results have
been obtained without retraining on these datasets. The CoNSeP dataset con-
sists mainly of colorectal adenocarcinoma which is under-represented in the
training set of MoNuSeg, proving very good generalization of our method.

Moreover, from our ablation study (Table 1), it is clear that all components
of the proposed model are essential. Sparsity is the most important as by re-
moving it, the network regresses an attention map that is too smooth and not
necessarily concentrating on nuclei, thus being semantically meaningless. Quali-
tatively, we observed that Lsmooth allows the network to focus on only on nuclei
by removing attention over adjacent tissue regions, while Lequiv further refines
the attention maps by imposing geometric symmetry. Finally, in Figure 2 the
segmentation map for one test image is presented. Results obtained from the
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Test dataset Method AJI [13] AHD ADC

MoNuSeg test

CNN2 [13]† 0.3482 8.6924 0.6928

CNN3 [13]† 0.5083 7.6615 0.7623

Best Supervised [13]† 0.691 - -

CellProfiler [13] 0.1232 9.2771 0.5974
Fiji [13] 0.2733 8.9507 0.6493

M¬sparse 0.0312 13.1415 0.2283
M¬smooth 0.1929 8.8166 0.4789
M¬WSI 0.3025 8.2853 0.6209

M¬equiv 0.4938 8.0091 0.7136
Mproposed 0.5354 7.7502 0.7477

TNBC[15]

U-Net[7]† 0.514 - 0.681

SegNet+WS[7]† 0.559 - 0.758

HoverNet[7]† 0.590 - 0.749

CellProfiler 0.2080 - 0.4157

Mproposed 0.2656 - 0.5139

CoNSeP[7]

SegNet[7]† 0.194 - 0.796

U-Net[7]† 0.482 - 0.724

CellProfiler[7] 0.202 - 0.434
QuPath[7] 0.249 - 0.588

Mproposed 0.1980 - 0.587

Table 1. Quantitative results of the different benchmarked methods on three different
public available datasets. AJI, AHD, and ADC stand for Aggregated Jaccard Index, Av-
erage Hausdorff Distance, and Average Dice Coefficient, respectively. Methods marked
with † are supervised.

Mproposed attention network together with the nuclei segmentation after the per-
formed post-processing are summarised.

5 Conclusion

In this paper, we propose and investigate a self-supervised method for nuclei
segmentation of multi-organ histopathological images. In particular, we propose
the use of the scale classification as a guiding self-supervision signal to train an
attention network. We propose regularizers in order to regress attention maps
that are semantically meaningful. Promising results comparable with supervised
methods tested on the publicly available MoNuSeg dataset indicate the poten-
tials of our method. We show also via. experiments on TNBC and ConSeP that
our model generalizes well on new datasets. In the future, we aim to investi-
gate the integration of our results within a treatment selection strategy. Nuclei
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presence is often a strong bio-marker as it concerns emerging cancer treatments
(immunotherapy). Therefore, the end-to-end integration coupling histopathology
and treatment outcomes could lead to prognostic tools as it concerns treatment
response. Parallelly, other domains in medical imaging share concept similarities
with the proposed concept.
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