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1 Departamento de Ingenieŕıa de Sistemas e Industrial, Universidad Nacional de
Colombia, Bogotá, Colombia
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Abstract. This paper presents an information fusion method for the
automatic classification and retrieval of prostate histopathology whole-
slide images (WSIs). The approach employs a weakly-supervised machine
learning model that combines a bag-of-features representation, kernel
methods, and deep learning. The primary purpose of the method is to
incorporate text information during the model training to enrich the
representation of the images. It automatically learns an alignment of
the visual and textual space since each modality has different statisti-
cal properties. This alignment enriches the visual representation with
complementary semantic information extracted from the text modality.
The method was evaluated in both classification and retrieval tasks over
a dataset of 235 prostate WSIs with their pathology report from the
TCGA-PRAD dataset. The results show that the multimodal-enhanced
model outperforms unimodal models in both classification and retrieval.
It outperforms state–of–the–art baselines by an improvement in WSI
cancer detection of 4.74% achieving 77.01% in accuracy, and an improve-
ment of 19.35% for the task of retrieving similar cases, obtaining 64.50%
in mean average precision.

Keywords: Multimodal Fusion · Histopathology Images · Prostate Can-
cer

1 Introduction

Prostate cancer (PCa) is the fourth most common cancer worldwide with 1.2
million new cases in 2018 and it has the second-highest incidence of all cancers in
men [17]. Currently, the Gleason score (GS) is the standard grading system used
to determine the aggressiveness of PCa and determine treatment. Typical scores
range from 6 to 10 and cases with higher values are more likely to grow and spread
fast [12]. The gold standard for the diagnosis of PCa is the inspection of biopsies
or tissue samples. Thanks to the recent improvements in digital microscopy, the
diagnosis is increasingly made through the visual inspection of high-resolution
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scans of a tissue sample or a Whole-Slide Image (WSI) [2]. Digital pathology
is focused on the management of this kind of data. Collections of WSIs and
related information like pathology reports can be accessed and stored using
Picture Archiving and Communication Systems (PACS). This preserves the data
in the long term providing a valuable clinical information source. Computer-
Assisted Diagnosis (CAD) is one of the most studied tasks in digital pathology.
It generally covers tasks such as the automatic classification or grading of a
disease, segmentation of regions of interest, mitosis and necrosis detection, image
retrieval, among others [9].

Databases of medical images usually contain additional text data that is often
not used by CAD systems [8]. There are diagnostic reports, clinical and related
metadata that can be used to improve the performance of current CAD systems.
Text usually contains semantic content that complements the information in the
images. However, a current challenge is related to the appropriate combination of
the image and the text information, especially, considering that these modalities
originate from different sources and therefore have different statistical proper-
ties [1]. Multimodal fusion is an approach that aims to combine information
from different modalities or information sources. Its application in the medical
domain is an active research area [3,10] and it has not been fully explored for the
analysis of multimodal prostate histopathology data. Related studies show that
an appropriate combination of the image and text modalities provides better
overall performance in comparison with single modal approaches. For instance,
Jimenez-del-Toro et al. [8] proposed a multimodal retrieval method that com-
bines deep learning with rank fusion, their results show that multimodal queries
outperform both image and text in the retrieval of prostate tissue cases. In the
same manner, Contreras et al. [6] proposed a method that combines the data in
an early representation level besides the rank fusion, showing that there is joint
information that can be exploited at different fusion levels.

One of the main disadvantages of these methods is that they are unfeasible
in certain scenarios where a pathologist may only have an image, because, these
approaches also require multimodal inputs during the prediction or retrieval
of new cases. This motivates a fusion strategy that enhances the independent
representations of each modality instead of enhancing a joint and combined
representation. In this regard, some strategies have been proposed for the anal-
ysis of histopathology data: Caicedo et al. [2] proposed a non-negative matrix
factorization method for the multimodal indexing of multiple organ tissues, it
aims to induct a shared latent space for all modalities through an iterative
optimization process that independently reconstructs a modality in each step.
Cheerla et al. [5] proposed an unsupervised deep multimodal representation for
pan-cancer prognosis prediction, it combines information from clinical data, ge-
nomics, microRNA, and WSIs, using deep representation learning and a loss
function based on siamese networks. These approaches show the feasibility of a
new kind of weakly-supervised multimodal fusion that can be used to enrich the
representation of the histopathology images and can be explored in the analysis
of PCa.
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Besides the fusion strategy, a multimodal system requires an appropriate rep-
resentation of the images. In this matter, deep learning has become the state of
the art in many applications of computer vision, digital pathology, and the au-
tomatic analysis of prostate tissue images. Specifically, models like the Convolu-
tional Neural Networks (CNNs) can learn high-level representations from the raw
images without requiring handcrafted feature extraction and with minimal pre-
processing. Since WSIs are large images, the CNNs are usually trained to identify
patch-level patterns and the information is summarized for the global prediction
through a majority vote, bag-of-features, or ensembles [7,11,14]. There is evi-
dence that CNN-based CAD systems are comparable to international pathology
experts in prostate cancer detection and grading [14]. Nonetheless, the integra-
tion of semantic information in deep learning models for the automatic analysis
of prostate images remains a challenge.

This work addresses the problem of cancer detection and similar case re-
trieval using multimodal histopathology data from prostate WSIs and their di-
agnostic reports. To this end, we present Multimodal Latent Semantic Alignment
(M-LSA), a model to simultaneously learn an embedded representation for the
WSIs and their associated text content, it is trained using a weakly-supervised
approach that uses text information to enhance the representation of the images.
The method exploits the complementary information of visual and text modali-
ties, which leads to better classification and retrieval performance as shown by
the experimental evaluation. The remainder of this document is organized as
follows: Section 2 presents M-LSA, showing details about the information fusion
strategy and the representation techniques; Section 3 describes the experimental
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Fig. 1. Overview of the training and prediction phases of the proposed method for the
automatic classification of prostate WSIs.
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evaluation used to assess the effects of the weak semantic supervision in classi-
fication and retrieval tasks; Section 4 presents the experimental results and the
analysis; Section 5 shows the conclusions.

2 Overview of Multimodal Latent Semantic Alignment

An overview of the method is shown in Figure 1. During the training phase, the
method incorporates weakly-supervised information from the diagnostic reports
to enhance an embedded representation of the WSIs. This enhanced represen-
tation is used during the prediction phase to obtain a GS estimation using only
the information from the images. The WSIs are represented using a Bag-of-
Visual Words (BoVW) approach and the text content is represented using a
Bag-of-Words (BoW). These representations are embedded and aligned using an
information fusion strategy that is described in the following subsections.

2.1 Data Representation

As shown in Fig. 1, the training data are composed of pairs of annotated WSIs
and their diagnostic reports. We represent these multimodal data as a term
frequency-inverse document frequency (TF-IDF) matrix for each modality. In
this way, the representation of the text content is straightforward. The text pre-
processing consists of stop-word removal during the text vocabulary T construc-
tion. We use the TF-IDF weighting schema because it benefits the information
fusion strategy providing numerical stability while increasing the importance of
unique terms and attenuating the common ones.

For the images, a codebook or visual vocabulary V is constructed to represent
a WSI as a Bag-of-Visual-Words (BoVW). The BoVW contains a distribution
P (V = vi|I = Ij) of certain visual words vi in an image Ij . To compute this,
2000 non-overlapping patches of size 256×256 are selected from each WSI using
the blue ratio as filtering criteria (for obtaining most severe cancer areas) [4] as it
is done in [7]. Then, a feature representation of the patches is computed using the
GoogLeNet CNN architecture that was pre-trained for the binary classification
of the GS, we use this network because it has demonstrated to outperform other
architectures in the automatic diagnostic of prostate tissues [7]. Each patch is
described with the feature vector that outputs the last average pooling layer of
GoogLeNet, which is commonly used for feature extraction. The codebook is
constructed using K-means over the CNN descriptors. More precisely, a visual
word is a cluster in the CNN representation space and a visual document is
constructed by assigning each patch descriptor to their closest centroid. As shown
in Fig. 1, this procedure allows computing the BoVW by counting the number of
patches in each cluster. Besides, TF-IDF is also used to weight the distribution
of visual words.
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Fig. 2. Conceptual diagram of the multimodal information fusion strategy.

2.2 Information Fusion

An overall description of the information fusion strategy is shown in Fig. 2.
This strategy uses a reformulation of kernel matrix factorization that allows
solving the problem through gradient-based optimization techniques as originally
proposed in [15,16]. The main idea of the strategy is to take advantage of the
reformulation and include certain constraints that incorporate supervised and
weakly-supervised semantic information. This can be seen as an extension of the
original embedding learning problem, in which the goal is not only to find a low-
dimensional latent space but to learn an aligned latent space for each modality
that also contains information about the GS.

The information fusion strategy requires to compute two kernel matrices:
on the one hand, a matrix KV (XV, X̂V) is calculated applying a visual kernel
function KV on the TF-IDF representations Xv ∈ RN×|V | of the training WSIs
(N is the number of observations and |V | is the visual codebook size) and a
matrix X̂V that can be the visual training or the test TF-IDF representations.
On the other hand, a matrix KT (XT, X̂T) is calculated using the equivalent text
matrices and functions. The main purpose of the kernel functions is to capture
the complex nature of each modality to obtain a simpler representation, i.e., the
data is transformed into a feature space where linear relations are more likely
to be found. In this case, the feature spaces of each modality, Xi ∈ {V, T}, are
mapped into a latent space Hi of dimension L, through a linear transformation
Ki(Xi, X̂i)Wi that uses a weight matrix Wi that must be learned.

The complete loss function is presented in Eq. 1, it combines the three fol-

lowing errors: (1) each space is linearly projected using a weight matrix W̃i to

obtain a reconstruction of each kernel K̃i(Xi, X̂i). This allows us to estimate a

reconstruction error
1

Ji, which is the mean squared error between the input and
the output of each i modality and was derived using the kernel trick in [15]. This
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error is the basis of matrix factorization and is a non-supervised way to learn
latent factors; (2) an artificial neural network (ANN) with a softmax activation

output is used to obtain the predictions Ỹi of the GS. These predictions are used

to calculate the categorical cross-entropy
2

Ji, which is used as an estimate of how
different the predictions to one-hot encodings are of the GS ground truth Yi;
(3) the cosine similarity cos(h1,h2) is computed between latent vectors of each
modality h1 ∈ H1 and h2 ∈ H2. It measures the degree of alignment between
the visual and text latent spaces, and allows us to calculate an alignment error
3

J . The alignment term promotes the learning of close latent spaces, this allows
the mutual enrichment of the visual and textual latent representations.

1

Ji =
1

2

∑
xj∈Xi

(1− 2K(xj ,Xi)K̃i(xj ,Xi)
T + K̃i(xj ,Xi)K(Xi,Xi)K̃i(xj ,Xi)

T )

2

Ji = −
∑

yj∈Yi,ỹj∈Ỹi

〈yj , log ỹj〉
3

J =
1

2

∑
h1∈H1,h2∈H2

(cos(h1,h2)− 1)2

J = α1

1

JV + α2

1

JT + β1
2

JV + β2
2

JT + γ
3

J
(1)

3 Experimental Settings

TCGA-PRAD Dataset: The dataset is comprised of images and diagnostic
reports from prostate cancer tissue with Gleason scores between 6 and 10. The
data are available via The Cancer Genome Atlas (TCGA), which is a publicly
available large collection of digital pathology and other data that contains a set
of 500 cases of prostate adenocarcinoma (PRAD). We use a subset with 235
cases as suggested in our baseline [7,8]. The dataset was divided into the same
baseline partitions for cross-validation: 141 cases for training, 48 for validation,
and 46 for testing.

Cancer Detection Performance: The proposed method is evaluated on
the automatic classification of low (GS 6 and 7) and high (GS 8, 9, and 10)
grades, as this stratification changes the treatment decision. We aim to evaluate
the effects of the semantic enhancement. For this reason, two versions of the
proposed model are trained: (1) A visual latent semantic embedding V-LSE,
which is a version of the proposed model that does not include the alignment,
i.e., it is a model that is only trained using the WSIs. (2) M-LSA, which is a
V-LSE model that is enhanced using the semantic information of the reports
during training and is evaluated as shown in Fig. 1. In this case, we evaluate
the performance in terms of classification accuracy, which is the metric used in
similar studies [7,11].

Image Retrieval Performance: In this case, the models are trained to
classify the five different categories of GS and the softmax outputs are used as an
indexer. A single experiment consists of a simulated query, i.e., an example image
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is taken from the test set and the softmax outputs are calculated. Finally, these
outputs are compared to the training set, and using the cosine similarity with
all the test cases a ranking is constructed. Similar to our baseline studies [8,6],
a case is relevant to the query if they share the same GS. The performance is
evaluated in terms of Mean Average Precision (MAP), GM-MAP, and precision
at top 10 (P@10) and 30 (P@30) retrieved results.

Hyperparameter selection: The validation set is used to determine an
appropriate combination of hyperparameters. We use a random search due to
a large number of combinations. The model’s weights are estimated through
the Adam optimization algorithm (lr = 10−3, β1 = 10−1, β1 = 10−2) using
the training set and a combination of hyperparameters is selected using the
validation loss as criteria. The loss parameters are configured as follows: β1 =
β2 = 5, α1 = α2 = γ = 1; the visual codebook size |V | is explored in a range
between 100 and 1000; the latent dimension L is explored between 10 and 100;
the activation functions of the ANNs are explored between ReLU, sigmoid and
linear; the ANNs have two hidden layers and the number of units in each layer is
explored in a range between 16 and 256; a dropout probability of 0.2 is added to
the ANN weights for regularization; finally, some common kernels for histogram-
based representations such as the linear, cosine, χ2 and RBF are evaluated. The
last two kernels have an additional hyper-parameter γ that must be determined,
the range of the visual χ2 kernel is γV ∈ [10−3, 10], the range for the text
χ2 kernel is γT ∈ [10−4, 10−1], the range for the visual RBF kernel is γV ∈
[10−2, 100] and the range for the text RBF kernel is γT ∈ [10−3, 10]. There are a
total of 16 possible kernel combinations, for each one 100 random combinations
of hyperparameters are used. The generated parameters for the visual modality
are also used to train the V-LSE.

4 Results and Analysis

Table 1 presents the results for cancer detection. The proposed method is com-
pared with similar studies that use comparable evaluation strategies on the
same dataset. In the first baseline study [7] a GoogLeNet is used to represent
the patches and to summarize the information through a majority vote, V-LSE
achieves an equivalent performance. This behavior is reasonable considering that
we are using the same CNN for the representation and a unimodal model should
achieve similar performance. The second baseline study [13] presents a modified
AlexNet architecture and summarizes using a majority vote. The authors specify
that they included more training data. Thus, an important advantage of M-LSA
is that it achieves a similar performance including text content instead of more
training data. This means it can obtain better performance when limited train-
ing data are available. Also, weak supervision allows us to find a better visual
latent representation through the automatic incorporation of text content. There
is no need to assign additional local labels to model a visual vocabulary as it is
usually done in similar approaches.
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Table 1. Comparison with state-of-the art methods in cancer detection.

Method Accuracy

GoogLeNet [7] 73.52
Modified AlexNet [13] 76.90

V-LSE 74.02
M-LSA 77.01

The weak supervision allows us to find a more appropriate feature space that
may not be found using the image content only, the results show that M-LSA
outperforms V-LSE in cancer detection, achieving the best performance using
an RBF kernel for both modalities, whereas V-LSE achieves it using a linear
kernel. Likewise, compared to the linear alignment case of M-LSA, the RBF
kernel achieves an accuracy improvement of 2.25%, which shows the advantage
of a non-linear alignment, especially, the importance of the kernel functions lies
in their capacity to transform the representations to a feature space in which it is
more likely to align the embeddings from different modalities. This is important
considering that the representations learned in a deep neural network may not
share linear relations with other modalities, thus, the kernel methods are valuable
to model the complex nature of multimodal data.

The retrieval results are shown in Table 4, presenting a comparison with
the state-of-the-art retrieval methods that have been used to search PCa cases
on the same dataset. It can be noticed that the semantic enhanced M-LSA
model outperforms other image retrieval approaches. It is important to highlight
that M-LSA only uses an image as a query, whereas other multimodal retrieval
approaches require a multimodal query during the testing phase, which may
not be suitable in realistic environments with new and uncertain cases where
pathologists may not have a diagnosis report.

Table 2. Results for the retrieval task, * denotes cases with multimodal queries.

Method MAP GM-MAP P@10 P@30

Image Retrieval [8] 0.5113 0.3921 0.4500 0.4600
Text Retrieval [8] 0.4092 0.3561 0.4913 0.3775

Multimodal Retrieval* [8] 0.5404 0.4196 0.5217 0.4884
KLSE* [6] 0.6263 0.4843 0.5667 0.6326

Visual TF-IDF 0.4390 0.3486 0.3717 0.3667
Text TF-IDF 0.3574 0.3143 0.3848 0.3377

V-LSE 0.5881 0.3966 0.5000 0.4949
M-LSA 0.6450 0.4187 0.5752 0.5500

The proposed methodology represents an important opportunity for clinical
translation, a CAD system can include M-LSA to provide a second opinion or
retrieve similar cases. Contrary to other multimodal approaches, it does not re-
quire the text information during the prediction phase, which is important during
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uncertain diagnostics where the findings may not be clear and the annotations
may be erroneous or cognitively biased.

5 Concluding Remarks

We present a novel information fusion strategy for improving image represen-
tations using weak semantic supervision from diagnostic reports. The method
uses the text information of diagnostic reports attached to histopathology cases
as a source of weak supervision during training. During prediction it only uses
visual information, same as unimodal visual methods, however, the experimental
results showed that the use of multimodal information during training greatly im-
proves the performance when compared to unimodal approaches. The proposed
methodology shows that it is possible to exploit the multimodal information
in medical databases that currently is not being fully exploited, considering a
realistic environment in which pathologists may only have a WSI as input query.
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