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Abstract. The automatic grading of diabetic retinopathy (DR) facil-
itates medical diagnosis for both patients and physicians. Existing re-
searches formulate DR grading as an image classification problem. As
the stages/categories of DR correlate with each other, the relationship
between different classes cannot be explicitly described via a one-hot
label because it is empirically estimated by different physicians with dif-
ferent outcomes. This class correlation limits existing networks to achieve
effective classification. In this paper, we propose a Graph REsidual rE-
ranking Network (GREEN) to introduce a class dependency prior into
the original image classification network. The class dependency prior is
represented by a graph convolutional network with an adjacency matrix.
This prior augments image classification pipeline by re-ranking classifica-
tion results in a residual aggregation manner. Experiments on the stan-
dard benchmarks have shown that GREEN performs favorably against
state-of-the-art approaches.

Keywords: Diabetic Retinopathy Grading · Graph Convolutional Net-
work.

1 Introduction

Diabetic retinopathy (DR) is a common chronic disease leading to visual loss
and blindness [6]. According to the severity of retinopathy lesion, DR is nor-
mally graded into five stages.3 Medical treatments for DR varies according to
different DR grades [5]. In practice, DR grading is an empirical process executed
by physicians, which requires sufficient expertise and time-consuming identifica-
tions. Therefore, there is a need to develop automatic DR grading systems to
benefit both patients and physicians for efficient diagnosis.

The convolutional neural networks (CNNs) have improved the grading per-
formance of DR [8]. Existing methods [8,11,12] formulate the DR grading as an
image classification task where each predefined category represents one stage of

? L. Gong is the corresponding author. This work was done when S. Liu was an intern
in Tencent Jarvis Lab.

3 The five stages are defined as none, mild, moderate, severe and proliferative stages
according to the International Clinical Diabetic Retinopathy scale [3].
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None (1) Mild (1) Severe (1) Proliferative (1)
Mild (2) Moderate (2) Moderate (2) Severe (2)

Fig. 1: Inconsistent labels from two physicians (i.e., 1 and 2) for the same DR
fundus images. Class correlation causes this inconsistency and could limit the
network classification accuracy.

DR. Li et al. [11] proposed two attention modules (i.e., disease specific and dis-
ease dependent models) which were integrated into the CNN to automatically
grade DR. A number of randomly augmented images were generated in [12] for
each sample and the CNN predictions of generated images were fused for final
diagnosis. CNN predictions of fundus images captured from paired eyes (i.e., the
corresponding left and right eyes) could be fused together for final predictions as
well. These DR grading systems typically use off-the-shelf CNNs (i.e., VGG [13]
and ResNet [9]) which are designed for natural image classifications where the
categories of natural images (i.e., ImageNet [7]) usually do not correlate with
each other. Differently, fundus images of DR dataset are visually similar. Besides,
one stage/category of DR correlates with others, which brings difficulty for physi-
cians to produce one-hot labels.4 Fig. 1 shows four examples of DR which were
labeled differently by two physicians. Moreover, a physician may label the same
fundus image differently at different time. When using the challenging training
data to learn a classification network, we observe that the inter-class correlation
is not effectively modeled and the classification performance is limited.

Soft labels are intuitively considered to model inter-class correlations. Bagher-
inezhad et al. [4] proposed a label refinery approach to iteratively update ground
truth labels during the training process. A label embedding network was de-
signed in [14] to learn soft distributions of network predictions. To the best of
our knowledge, all existing methods tend to dynamically transform the one-hot
label into a discrete probability distribution during the training process, and
taking advantage of the inter-class correlation information, while leaving the
structure of the classification network fixed. However, the inter-class correlation
is implicitly modeled within the classification network, which may hamper the
network’s convergence or bring limited improvement as shown in Table 1.

In this paper, we propose a Graph REsidual rE-ranking Network (GREEN)
to explicitly model the class correlation for significant DR grading improvement.
GREEN consists of a standard image classification network and an extra class-

4 In each one-hot label, there is only one element whose value is 1 while the remaining
elements are all 0.
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This is a constant value 
when inference.

Class-dependency LearningClassification

CNN

Fig. 2: Overview of the proposed framework. Besides the image classification
network which consists of a feature backbone and a classifier, we propose a
class-dependency module to model class correlation. The proposed module ben-
efits image classification via residual aggregation to re-rank network prediction
results.

dependency module. In this class-dependency module, we use a Graph Convo-
lutional Network (GCN) [10] to integrate the class-dependency prior into the
classification network. The graph structure formulates each class as one node
and models the relationship between different nodes via an adjacency matrix.
The adjacency matrix is learned to represent the dependencies of different classes
in the CNN feature space. The class-dependency module is trained end-to-end
together with the image classification network. The output of this module is kept
fixed during inference and re-ranks classification results via residual aggregation.
To this end, the class-dependency is learned offline and functions as a constant
prior when we classify DR images. Experiments demonstrate that the proposed
method improves original classification accuracy and performs favorably against
state-of-the-art approaches.

2 Proposed Method

We illustrate the proposed Graph REsidual rE-ranking Network (GREEN) in
Fig. 2 as an overview. The input of GREEN is a fundus image and the output is
the corresponding grade of DR. The image classification network follows existing
structures [9,15] which includes a feature extraction backbone and a classifier.
On the other hand, the class-dependency module formulates class dependency
as prior information to re-rank classification results via residual aggregation. In
the following, we first show how the class-dependency module improves network



prediction via residual re-ranking. Then, we illustrate the details of the proposed
module including architectures and training details.

2.1 Image Classification with Residual Re-ranking

The training data with label uncertainty diminishes CNNs’ discriminative capa-
bility when grading DR. To mitigate this effect, we propose a class-dependency
module to reweigh network predictions. The proposed module is learned offline
and kept fixed during online inference. It provides constant values to fuse with
input CNN features for classification re-ranking. We illustrate the original im-
age classification network in the following and show how the proposed module
re-ranks in details.

Image Classification. A typical image classification network consists of a fea-
ture extraction backbone and a classifier. After extracting the CNN feature maps
of an input fundus image, we apply a global average pooling (GAP) layer to the
extracted feature maps and pass the output to the classifier (i.e., fully connected
layers). The advantage of using GAP is that it effectively maps an input vec-
tor with arbitrary dimension to a fixed one. As such, we do not need to resize
input images to a fixed resolution (e.g., 256×256), which is often a required pre-
processing step of natural images. This benefits the severity estimation process
which is akin to fine-grained image classification where the input fundus images
are similar to each other. We keep the input images in high resolution to avoid
potential detail missing to reduce misclassification.

Residual Re-ranking. For an input fundus image I, the output of GAP is a
vector with fixed dimension d. We denote this vector as G ∈ R1×d. The class-
dependency module produces a learned matrix C ∈ Rn×d where n is the number
of output categories. We generate the instance re-ranking weight by fusing these
two inputs. The fusion process is a matrix multiplication operation followed by
a sigmoid activation, which can be written as:

RI = σ
(
G× CT

)
(1)

where CT is the transpose matrix of C, σ is the sigmoid function and RI is the
instance re-ranking weight. This operation projects G into C along the direction
of each output category, and measures the corresponding correlation values. After
computing RI, we re-rank the classification results via residual aggregation as
follows:

PI = Softmax (RI � SI + SI) (2)

where PI is the probability of output classes, SI is the class prediction score
from the fully connected (FC) layer and � is the element-wise multiplication
operation. Along with the original prediction SI from the FC output, we set the
re-rank weights on it to adjust the prediction scores. The RI�SI term functions
as an auxiliary prediction from the perspective of class-dependency prior on the
current input.



2.2 Graph Convolutional Network

The proposed class-dependency module consists of a graph convolutional net-
work (GCN). GCN is introduced in [10] to perform semi-supervised classification,
where the output of GCN is the probability of each class. Differently, we offline
train the GCN to predict a constant class dependency prior to fuse with CNN
features for final predictions.

The graph structure formulates each class as one node and constructs the re-
lationship between different nodes via an adjacency matrix. As shown in Fig. 2,
the adjacency matrix, together with node feature, is the input of GCN. The out-
put is a learned projection matrix that contains the representation of each class
in the CNN feature space. The dimension of this feature space is same as that
of GAP output. For each input image, the corresponding feature representation
after GAP output is multiplied with the projection matrix. The multiplication
results indicate the correlation values between input features and each class.

Following [10], the GCN adopted in the proposed module consists of two
matrix multiplication layers with a ReLU activation function. We denote the
adjacency matrix as A, node features as X, and the weight of the first layer as
W1. The output of the first layer can be written as:

C1(A,X,W1) = A×X ×W1 (3)

where each row of A ∈ Rn×n is initialized following the Gaussian distribution
with the peak set on the diagonal position, X ∈ Rn×n is an identical matrix and
represents there are n nodes in the graph. W1 ∈ Rn×h maps dimension from n
to h (the hidden layer). We send C1(A,X,W1) to the remaining GCN structures
and obtain the output as:

C = A× ReLU (C1)×W2 (4)

where C ∈ Rn×d is the prior knowledge of the class dependency and W2 ∈ Rh×d

maps dimension from the hidden layer to output class. Thus, we can learn the
complex inter-class correlations by stacking two GCN layers. We refer interested
readers to [10] for more details. During the training stage, we fuse C with G
via Eq. (1) for forward computation. The gradients via back propagation are
passed into both GCN and image classification network. When learning GCN,
we update both adjacent matrix A and GCN parameters (i.e., W1 and W2)
as they constitute the class-dependency prior. This class-dependency module is
trained end-to-end together with the image classification network and the output
is kept fixed as a constant prior during inference.

Adjacency matrix visualization. Fig. 3 shows the adjacency matrix repre-
senting class-dependency. The matrix shown on the left is the initial matrix where
the abbreviation NO, MI, MO, SE and PR correspond to none, mild, moderate,
severe and proliferative stages respectively. The elements along the diagonal are
initialized with large values while their neighbors are set to relatively small val-
ues. The values of neighboring elements indicate the class dependency between



NO MI MO SE PR

NO 0.850 0.150 0 0 0

MI 0.150 0.700 0.150 0 0

MO 0 0.150 0.700 0.150 0

SE 0 0 0.150 0.700 0.150

PR 0 0 0 0.150 0.850

NO MI MO SE PR

NO 0.806 0.194 0 0 0

MI 0.194 0.590 0.215 0 0

MO 0 0.215 0.606 0.179 0

SE 0 0 0.179 0.591 0.230

PR 0 0 0 0.230 0.770

Fig. 3: Variations of elements in adjacency matrix before and after training.
The abbreviation NO, MI, MO, SE and PR indicate corresponding five stages
of DR. The learned matrix is fixed during testing to consistently provide class
dependency priors for DR grading.

different categories. After training, we observe that in the matrix shown on the
right part of Fig. 3, the values with distant categories are 0 (e.g., the adjacent
value between NO and MO, or MI and PR). This shows that there exists a clear
boundary between distant categories. Furthermore, the adjacent values between
MI and MO, SE and PR are higher than others. It complies with the empirical
observation from clinicians that the boundary of mild and moderate stages is
not obvious, so as the severe and proliferative stages.

3 Experiments

In this section, we evaluate the proposed method on two DR benchmark datasets:
Diabetic Retinopathy Detection (DRD) [1] and APTOS 2019 Blindness Detec-
tion (APTOS2019) [2]. There are 35,126 and 3,662 fundus images in DRD and
APTOS2019, respectively. We split each dataset into five folds for cross vali-
dation and use weighted kappa, weighted accuracy, and weighted F1 score as
evaluation metrics.

We use EfficientNet-b0 [15] as image classification baseline with ImageNet
pretraining [7]. When training with fundus images, we utilize SGD as the op-
timizer and set the initial learning rate as 1e−3. The batch size is set as 128
and the training procedure ends at the 60th epoch. More results are provided in
the supplementary file. We will make our implementation code available to the
public.

3.1 Ablation Study

The contribution of GREEN is to use a class-dependency module for classifica-
tion reweighing. In this ablation study, we show how this module improves base-
line classification accuracies. Meanwhile, training with soft labels (i.e., LEN [14]



Table 1: The ablation study with different training schemes on the DRD dataset.
GREEN performs favorably against other methods on baseline improvements.

Method Backbone
Evaluation Metrics

Kappa Accuracy F1 score

Base EfficientNet-b0 0.583 0.803 0.754
Base + LRN [4] EfficientNet-b0 0.619 0.810 0.776
Base + LEN [14] EfficientNet-b0 0.623 0.808 0.764
Base + GREEN (fixed
adjacency matrix)

EfficientNet-b0 0.683 0.811 0.773

Base + GREEN EfficientNet-b0 0.700 0.816 0.782

and LRN [4]) and training with fixed adjacency matrix [10] are also employed
with the baseline network for comparisons. The evaluations are conducted on
both datasets.

Table 1 shows the experimental results on the DRD dataset with EfficientNet-
b0 [15] as the backbone for experimental efficiency. Compared to the baseline
performance, the soft label learning schemes (i.e., LEN and LRN) bring limited
improvement under all metrics. On the other hand, training GREEN with a
fixed adjacency matrix (as shown in the left part of Fig. 3) does not robustly
outperform soft label learning schemes (e.g., 0.773 v.s. 0.776 of F1 score). Nev-
ertheless, by training the proposed class-dependency module with the adjacency
matrix end-to-end, we consistently improve the baseline and perform favorably
against other learning configurations under all metrics. Similar performance on
APTOS2019 dataset is shown in supplementary file where GREEN performs
favorably against other configurations on baseline improvements.

3.2 Comparisons with state-of-the-art approaches

We also compare GREEN with state-of-the-art approaches including DLI [12]
and CANet [11]. DLI fuses multiple sources (i.e., randomly augmentation im-
ages and paired eyes if possible) while CANet involves deep CNN attentions.
For a fair comparison, we follow CANet to use ResNet-50 as the feature extrac-
tion backbone. Besides, we also validate the effectiveness of GREEN by using
prevalent backbones (i.e., EfficientNet-b0 and Se-ResNeXt50).

Table 2 shows the results on the DRD dataset. GREEN consistently out-
performs other methods under all the evaluation metrics by using ResNet-50.
Furthermore, the results show the effectiveness of GREEN of EfficientNet-b0
and Se-ResNeXt50 backbones. In Table 3, the evaluation results are similar on
the APTOS2019 dataset. With the same CNN backbone, GREEN performs fa-
vorably against DLI and CANet. By using other CNN backbones, GREEN is
shown to be effective as well. The evaluations on these two datasets indicate
that GREEN suits prevalent backbones for effective DR grading and performs
favorably against existing methods.

Fig. 4 shows the visual evaluation results. We compare GREEN with DIL
and CANet on the APTOS2019 dataset. In general, DIL and CANet is not



DIL / CANet: NO / NO DIL / CANet: MI / MO DIL / CANet: MO / SE DIL / CANet: PR / PR
GREEN / GT: MI / MI GREEN / GT: MO / MO GREEN / GT: MO / MO GREEN / GT: SE / SE

Fig. 4: Visual evaluations on the APTOS2019 dataset. GREEN is compared to
DIL, CANet, and the ground truth (GT). The abbreviation NO, MI, MO, SE,
PR correspond to the five DR stages illustrated in [3]. The results show GREEN
is effective to perform DR grading.

Table 2: Comparison with state-of-the-art on the DRD [1] dataset.

Method Backbone
Evaluation Metrics

Kappa Accuracy F1 score

DLI [12] ResNet50 0.620 0.809 0.765
CANet [11] ResNet50 0.649 0.816 0.774
GREEN ResNet50 0.693 0.820 0.780
GREEN EfficientNet-b0 0.700 0.816 0.782
GREEN Se-ResNeXt50 0.727 0.826 0.790

Table 3: Comparison with state-of-the-art on the APTOS2019 [2] dataset.

Method Backbone
Evaluation Metrics

Kappa Accuracy F1 score

DLI [12] ResNet50 0.895 0.825 0.803
CANet [11] ResNet50 0.900 0.832 0.813
GREEN ResNet50 0.908 0.844 0.836
GREEN EfficientNet-b0 0.910 0.848 0.835
GREEN Se-ResNeXt50 0.912 0.857 0.852

effective to accurately grade DR over all stages. This is due to a lack of class-
dependency modeling during CNN classification. In comparison, by formulating
class-dependency with GCN and integrating it into the CNN for end-to-end
training, we achieve favorable results when grading DR of all the stages.

4 Concluding Remarks

In this work, we proposed to model class correlations for DR grading via a class-
dependency formulation. In the proposed model, we integrated GCN into the
original classification network and trained the whole network end-to-end. This
model was kept fixed during online inference to consistently produce class de-
pendency priors, which re-ranked the original classification results via residual
aggregation. Experiments on the benchmark datasets showed the effectiveness of



the proposed method by using prevalent CNN backbones. Meanwhile, the pro-
posed method performed favorably against state-of-the-art approaches.
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