Skip to main content

Combining Fundus Images and Fluorescein Angiography for Artery/Vein Classification Using the Hierarchical Vessel Graph Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

We present a new framework for retinal artery/vein classification from fundus images and corresponding fluorescein angiography (FA) images. While FA seem to provide the most relevant information, it is often insufficient depending on the acquisition conditions. As fundus images are often acquired by default, we combine the fundus image and FA within a parallel convolutional neural network to extract the maximum information in the generated features. Furthermore, we use these features as the input to a hierarchical graph neural network to ensure that the connectivity of vessels plays a part in the classification. We provide investigative evidence through ablative and comparative quantitative evaluations to better determine the optimal configuration in combining the fundus image and FA in a deep learning framework and demonstrate the enhancement in performance compared to previous methods.

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (NRF-2018R1D1A1A09083241 and NRF-2020R1F1A1051847).

This work was done while K. Noh was with Seoul National University Bundang Hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, M., Toslak, D., Lim, J.I., Yao, X.: Color fundus image guided artery-vein differentiation in optical coherence tomography angiography. Invest. Ophthal. Vis. Sci. 59(12), 4953–4962 (2018). https://doi.org/10.1167/iovs.18-24831

    Article  Google Scholar 

  2. Badawi, S.A., Fraz, M.M.: Multiloss function based deep convolutional neural network for segmentation of retinal vasculature into arterioles and venules. BioMed Res. Int. 2019, 1–17 (2019). https://doi.org/10.1155/2019/4747230

    Article  Google Scholar 

  3. Cunha-Vaz, J.G.: Pathophysiology of diabetic retinopathy. Br. J. Ophthalmol. 62(6), 351–355 (1978). https://doi.org/10.1136/bjo.62.6.351

    Article  Google Scholar 

  4. Eppenhof, K., Bekkers, E., Berendschot, T.T., Pluim, J., ter Haar Romeny, B.: Retinal artery/vein classification via graph cut optimization. In: Proceedings of the Ophthalmic Medical Image Analysis Second International Workshop, OMIA 2015, Held in Conjunction with MICCAI 2015, pp. 121–128 (2015). https://doi.org/10.17077/omia.1035

  5. Estrada, R., Allingham, M.J., Mettu, P.S., Cousins, S.W., Tomasi, C., Farsiu, S.: Retinal artery-vein classification via topology estimation. IEEE Trans. Med. Imaging 34(12), 2518–2534 (2015). https://doi.org/10.1109/TMI.2015.2443117

    Article  Google Scholar 

  6. Gao, H., Ji, S.: Graph u-nets. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of International Conference on Machine Learning (ICML). Proceedings of Machine Learning Research, Long Beach, California, USA, 09–15 June 2019, vol. 97, pp. 2083–2092. PMLR (2019). http://proceedings.mlr.press/v97/gao19a.html

  7. Hemelings, R., Elen, B., Stalmans, I., Keer, K.V., Boever, P.D., Blaschko, M.B.: Artery-vein segmentation in fundus images using a fully convolutional network. Comput. Med. Imaging Graph. 76, 101636 (2019). https://doi.org/10.1016/j.compmedimag.2019.05.004

    Article  Google Scholar 

  8. Hu, Q., Abràmoff, M.D., Garvin, M.K.: Automated separation of binary overlapping trees in low-contrast color retinal images. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 436–443. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_54

    Chapter  Google Scholar 

  9. Ikram, M.K., et al.: Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain 129(1), 182–188 (2005). https://doi.org/10.1093/brain/awh688

    Article  Google Scholar 

  10. Joshi, V.S., Reinhardt, J.M., Garvin, M.K., Abramoff, M.D.: Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks. PLoS ONE 9(2), 1–12 (2014). https://doi.org/10.1371/journal.pone.0088061

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  12. Ma, W., Yu, S., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 769–778. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_85

    Chapter  Google Scholar 

  13. Meyer, M.I., Galdran, A., Costa, P., Mendonça, A.M., Campilho, A.: Deep convolutional artery/vein classification of retinal vessels. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 622–630. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_71

    Chapter  Google Scholar 

  14. Noh, K.J., Kim, J., Park, S.J., Lee, S.: Multimodal registration of fundus images with fluorescein angiography for fine-scale vessel segmentation. IEEE Access 8, 63757–63769 (2020)

    Article  Google Scholar 

  15. Noh, K.J., Park, S.J., Lee, S.: Fine-scale vessel extraction in fundus images by registration with fluorescein angiography. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 779–787. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_86

    Chapter  Google Scholar 

  16. Noh, K.J., Park, S.J., Lee, S.: Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput. Methods Programs Biomed. (2019). https://doi.org/10.1016/j.cmpb.2019.06.030

    Article  Google Scholar 

  17. Relan, D., MacGillivray, T., Ballerini, L., Trucco, E.: Retinal vessel classification: sorting arteries and veins. In: Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7396–7399 (2013). https://doi.org/10.1109/EMBC.2013.6611267

  18. Ritt, M., Schmieder, R.E.: Wall-to-lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 54(2), 384–387 (2009). https://doi.org/10.1161/HYPERTENSIONAHA.109.133025

    Article  Google Scholar 

  19. Shin, S.Y., Lee, S., Yun, I.D., Lee, K.M.: Deep vessel segmentation by learning graphical connectivity. Med. Image Anal. 58, 101556 (2019). https://doi.org/10.1016/j.media.2019.101556

    Article  Google Scholar 

  20. Simó, A., de Ves, E.: Segmentation of macular fluorescein angiographies. A statistical approach. Pattern Recogn. 34(4), 795–809 (2001). https://doi.org/10.1016/S0031-3203(00)00032-7

    Article  MATH  Google Scholar 

  21. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004). https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  22. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Li, P., Bengio, Y.: Graph attention networks. In: Proceedings of International Conference on Learning Representations (ICLR) (2018). https://openreview.net/forum?id=rJXMpikCZ

  23. Welikala, R., et al.: Automated arteriole and venule classification using deep learning for retinal images from the UK biobank cohort. Comput. Biol. Med. 90, 23–32 (2017). https://doi.org/10.1016/j.compbiomed.2017.09.005

    Article  Google Scholar 

  24. Xu, X., Ding, W., Abrmoff, M.D., Cao, R.: An improved arteriovenous classification method for the early diagnostics of various diseases in retinal image. Comput. Methods Programs Biomed. 141, 3–9 (2017). https://doi.org/10.1016/j.cmpb.2017.01.007

    Article  Google Scholar 

  25. Zhai, Z., et al.: Linking convolutional neural networks with graph convolutional networks: application in pulmonary artery-vein separation. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 36–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_5

    Chapter  Google Scholar 

  26. Zhao, Y., et al.: Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering. IEEE Trans. Med. Imaging 39(2), 341–356 (2020). https://doi.org/10.1109/TMI.2019.2926492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soochahn Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noh, K.J., Park, S.J., Lee, S. (2020). Combining Fundus Images and Fluorescein Angiography for Artery/Vein Classification Using the Hierarchical Vessel Graph Network. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics