Skip to main content

Open-Appositional-Synechial Anterior Chamber Angle Classification in AS-OCT Sequences

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Anterior chamber angle (ACA) classification is a key step in the diagnosis of angle-closure glaucoma in Anterior Segment Optical Coherence Tomography (AS-OCT). Existing automated analysis methods focus on a binary classification system (i.e., open angle or angle-closure) in a 2D AS-OCT slice. However, clinical diagnosis requires a more discriminating ACA three-class system (i.e., open, appositional, or synechial angles) for the benefit of clinicians who seek better to understand the progression of the spectrum of angle-closure glaucoma types. To address this, we propose a novel sequence multi-scale aggregation deep network (SMA-Net) for open-appositional-synechial ACA classification based on an AS-OCT sequence. In our method, a Multi-Scale Discriminative Aggregation (MSDA) block is utilized to learn the multi-scale representations at slice level, while a ConvLSTM is introduced to study the temporal dynamics of these representations at sequence level. Finally, a multi-level loss function is used to combine the slice-based and sequence-based losses. The proposed method is evaluated across two AS-OCT datasets. The experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy. We believe this work to be the first attempt to classify ACAs into open, appositional, or synechial types grading using AS-OCT sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.Y.: Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11), 2081–2090 (2014)

    Article  Google Scholar 

  2. Fu, H., et al.: A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images. Am. J. Ophthalmol. 203, 37–45 (2019)

    Article  Google Scholar 

  3. Foster, P.J., Buhrmann, R., Quigley, H.A., Johnson, G.J.: The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 86(2), 238–242 (2002)

    Article  Google Scholar 

  4. Fu, H., et al.: Angle-closure detection in anterior segment OCT based on multilevel deep network. IEEE Trans. Cybern. 50(7), 3358–3366 (2019)

    Article  Google Scholar 

  5. Shang, Q., et al.: Automated IRIS segmentation from anterior segment OCT images with occludable angles via local phase tensor. In: IEEE EMBC, pp. 4745–4749 (2019)

    Google Scholar 

  6. Xu, Y., et al.: Anterior chamber angle classification using multiscale histograms of oriented gradients for glaucoma subtype identification. In: IEEE EMBC, pp. 3167–3170 (2012)

    Google Scholar 

  7. Xu, Y., et al.: Automated anterior chamber angle localization and glaucoma type classification in OCT images. In: IEEE EMBC, pp. 7380–7383 (2013)

    Google Scholar 

  8. Fu, H., et al.: Segmentation and quantification for angle-closure glaucoma assessment in anterior segment OCT. IEEE Trans. Med. Imaging 36(9), 1930–1938 (2017)

    Article  Google Scholar 

  9. Zhao, Y., et al.: Automatic 2-D/3-D vessel enhancement in multiple modality images using a weighted symmetry filter. IEEE Trans. Med. Imaging 37(2), 438–450 (2017)

    Article  Google Scholar 

  10. Zhao, Y., et al.: Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans. Med. Imaging 36(1), 51–63 (2016)

    Article  Google Scholar 

  11. Zhao, Y., et al.: Retinal artery and vein classification via dominant sets clustering-based vascular topology estimation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 56–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_7

    Chapter  Google Scholar 

  12. Xu, B.Y., Chiang, M., Chaudhary, S., Kulkarni, S., Pardeshi, A.A., Varma, R.: Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images. Am. J. Ophthalmol. 208, 273–280 (2019)

    Article  Google Scholar 

  13. Hao, H., et al.: Anterior chamber angles classification in anterior segment OCT images via multi-scale regions convolutional neural networks. In: IEEE EMBC, pp. 849–852 (2019)

    Google Scholar 

  14. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE CVPR, pp. 1251–1258 (2017)

    Google Scholar 

  15. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: IEEE CVPR, pp. 2403–2412 (2018)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE CVPR, pp. 4489–4497 (2015)

    Google Scholar 

  18. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: IEEE CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  19. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  20. Annunziata, R., Kheirkhah, A., Aggarwal, S., Hamrah, P., Trucco, E.: A fully automated tortuosity quantification system with application to corneal nerve fibres in confocal microscopy images. Med. Image Anal. 32, 216–232 (2016)

    Article  Google Scholar 

  21. Zhao, Y., et al.: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Trans. Med. Imaging. 39(9), 2725–2738 (2020)

    Article  Google Scholar 

  22. https://en.wikipedia.org/wiki/Cohen%27s_kappa/

  23. https://en.wikipedia.org/wiki/F1_score/

  24. Xia, X., Xu, C., Nan, B.: Inception-v3 for flower classification. In: IEEE ICIVC, pp. 783–787 (2017)

    Google Scholar 

  25. Fu, H., et al.: Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 356–363. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_40

    Chapter  Google Scholar 

  26. Fu, H., Li, F., Sun, X., et al.: AGE challenge: angle closure glaucoma evaluation in anterior segment optical coherence tomography. arXiv (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (LZ19F010001, LQ19H180001), Ningbo “2025 S&T Megaprojects” (2019B10033, 2019B10061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huazhu Fu or Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, H. et al. (2020). Open-Appositional-Synechial Anterior Chamber Angle Classification in AS-OCT Sequences. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics