Skip to main content

Retinal Nerve Fiber Layer Defect Detection with Position Guidance

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

The retinal nerve fiber layer defect (RNFLD) provides early diagnostic evidence for many irreversible disabling or blinding diseases. This paper aims for automated RNFLD detection based on fundus images. Different from previous works that only consider the local contexts, we are the first to propose to detect RNFLD with position guidance, which senses both the physiological position and global dependencies with ease. Our solution consists of a position-consistent data preprocessing, a Position Guided Network, and a weakly supervised learning strategy. In the position-consistent data preprocessing, the optic disc region is evenly divided into several sectors according to the distribution regularity of RNFL. To detect RNFLD in sectors, the proposed Position Guided Network highlights the significant region with a position-aware attention module and captures the global dependencies with a bidirectional GRU module. The dataset about RNFLD suffers from noise labels, which is verified in our created dataset containing 4,335 fundus images. Thus the weakly supervised learning strategy, which jointly optimizes network parameters and label distributions, is proposed to reduce the impact of noise labels. Tested on a clinical dataset of 750 images, our solution achieves outstanding performance, attaining the F1 score of 81.00% that outperforms the baseline by 13.71%.

G. Cheng—This work is supported by the Beijing Natural Science Foundation (No. 4192029, No. 4202033).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_80

    Chapter  Google Scholar 

  2. Cho, K., et al.: Learning phrase representations using rnn encoder-decoder for statistical machine translation. EMNLP (2014)

    Google Scholar 

  3. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: ICCV, pp. 6569–6578 (2019)

    Google Scholar 

  4. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. TMI 37(7), 1597–1605 (2018)

    Google Scholar 

  5. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: learning of attention mechanism for visual explanation. In: CVPR, pp. 10705–10714 (2019)

    Google Scholar 

  6. Gao, B.B., Xing, C., Xie, C.W., Wu, J., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. Image Process. 26(6), 2825–2838 (2017)

    Article  MathSciNet  Google Scholar 

  7. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional neural networks encode?. ICLR (2020)

    Google Scholar 

  8. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: ICML (2018)

    Google Scholar 

  9. Joshi, G.D., Sivaswamy, J., Prashanth, R., Krishnadas, S.R.: Detection of peri-papillary atrophy and RNFL defect from retinal images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012. LNCS, vol. 7325, pp. 400–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31298-4_47

    Chapter  Google Scholar 

  10. Lamani, D., Manjunath, T., Mahesh, M., Nijagunarya, Y.: Early detection of glaucoma through retinal nerve fiber layer analysis using fractal dimension and texture feature. Int. J. Res. Eng. Technol. 3, 158–163 (2014)

    Google Scholar 

  11. Muramatsu, C., et al.: Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. J. Biomed. Opt. 15(1), 016021 (2010)

    Article  Google Scholar 

  12. Oh, J.E., Yang, H.K., Kim, K.G., Hwang, J.M.: Automatic computer-aided diagnosis of retinal nerve fiber layer defects using fundus photographs in optic neuropathy. Invest. Ophthalmol. Vis. Sci. 56(5), 2872–2879 (2015)

    Article  Google Scholar 

  13. Panda, R., Puhan, N.B., Rao, A., Mandal, B., Padhy, D., Panda, G.: Deep convolutional neural network-based patch classification for retinal nerve fiber layer defect detection in early glaucoma. J. Med. Imaging 5(4), 044003 (2018)

    Article  Google Scholar 

  14. Panda, R., Puhan, N.B., Rao, A., Padhy, D., Panda, G.: Recurrent neural network based retinal nerve fiber layer defect detection in early glaucoma. In: ISBI, pp. 692–695 IEEE (2017)

    Google Scholar 

  15. Panda, R., Puhan, N.B., Rao, A., Padhy, D., Panda, G.: Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma. Comput. Med. Imaging Graph. 66, 56–65 (2018)

    Article  Google Scholar 

  16. Sedai, S., Mahapatra, D., Hewavitharanage, S., Maetschke, S., Garnavi, R.: Semi-supervised segmentation of optic cup in retinal fundus images using variational autoencoder. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 75–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_9

    Chapter  Google Scholar 

  17. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: CVPR, pp. 5552–5560 (2018)

    Google Scholar 

  18. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017)

    Google Scholar 

  19. Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: CVPR, pp. 7017–7025 (2019)

    Google Scholar 

  20. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. ICLR (2017)

    Google Scholar 

  21. Zhao, R., Liao, W., Zou, B., Chen, Z., Li, S.: Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis. AAAI 33, 809–816 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, F., Yang, G., Ding, D., Cheng, G. (2020). Retinal Nerve Fiber Layer Defect Detection with Position Guidance. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics