Skip to main content

Fairness of Classifiers Across Skin Tones in Dermatology

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Recent advances in computer vision have led to breakthroughs in the development of automated skin image analysis. However, no attempt has been made to evaluate the consistency in performance across populations with varying skin tones. In this paper, we present an approach to estimate skin tone in skin disease benchmark datasets and investigate whether model performance is dependent on this measure. Specifically, we use individual typology angle (ITA) to approximate skin tone in dermatology datasets. We look at the distribution of ITA values to better understand skin color representation in two benchmark datasets: 1) the ISIC 2018 Challenge dataset, a collection of dermoscopic images of skin lesions for the detection of skin cancer, and 2) the SD-198 dataset, a collection of clinical images capturing a wide variety of skin diseases. To estimate ITA, we first develop segmentation models to isolate non-diseased areas of skin. We find that the majority of the data in the two datasets have ITA values between 34.5\(^\circ \) and 48\(^\circ \), which are associated with lighter skin, and is consistent with under-representation of darker skinned populations in these datasets. We also find no measurable correlation between accuracy of machine learning models and ITA values, though more comprehensive data is needed for further validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abedini, M., et al.: Accurate and scalable system for automatic detection of malignant melanoma. In: Celebi, M.E., Mendonca, T., Marques, J.S. (eds.) Dermoscopy Image Analysis. CRC Press (2015)

    Google Scholar 

  2. Adamson, A.S., Smith, A.: Machine learning and health care disparities in dermatology. JAMA Dermatol. 154(11), 1247–1248 (2018)

    Article  Google Scholar 

  3. Barocas, S., Selbst, A.D.: Big data’s disparate impact. Calif. Law Rev. 104(3), 671–732 (2016)

    Google Scholar 

  4. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018. CA-Cancer J. Clin. 68(6), 394–424 (2018)

    Article  Google Scholar 

  5. Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of the Conference on Fairness, Accountability and Transparency, pp. 77–91 (2018)

    Google Scholar 

  6. Casale, G.R., Siani, A.M., Diémoz, H., Agnesod, G., Parisi, A.V., Colosimo, A.: Extreme UV index and solar exposures at Plateau Rosà (3500 m a.s.l.) in Valle d’Aosta Region, Italy. Sci. Total Environ. 512–513, 622–630 (2015)

    Google Scholar 

  7. Celebi, M.E., Codella, N., Halpern, A.: Dermoscopy image analysis: overview and future directions. IEEE J. Biomed. Health 23(2), 474–478 (2019)

    Article  Google Scholar 

  8. Celebi, M.E., Codella, N., Halpern, A., Shen, D.: Guest editorial: skin lesion image analysis for melanoma detection. IEEE J. Biomed. Health 23(2), 479–480 (2019)

    Article  Google Scholar 

  9. Chaturvedi, S.S., Gupta, K., Prasad, P.: Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using MobileNet. arXiv:1907.03220 (2019)

  10. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the International Skin Imaging Collaboration (ISIC). arXiv:1902.03368 (2019)

  11. Codella, N.C.F., et al.: Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J. Res. Dev. 61(4/5), 5 (2016)

    Google Scholar 

  12. Eilers, S., et al.: Accuracy of self-report in assessing Fitzpatrick skin phototypes I through VI. JAMA Dermatol. 149(11), 1289–1294 (2013)

    Article  Google Scholar 

  13. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  14. Gohara, M.: Skin cancer: an African perspective. Brit. J. Dermatol. 173(Suppl. 2), 17–21 (2015)

    Article  Google Scholar 

  15. Haenssle, H.A., et al.: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29(8), 1836–1842 (2018)

    Article  Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. arXiv:1703.06870 (2018)

  17. International Skin Imaging Collaboration: ISIC 2018: Skin lesion analysis towards melanoma detection (2018). https://challenge2018.isic-archive.com/

  18. Johnson, J.W.: Automatic nucleus segmentation with mask-RCNN. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 944, pp. 399–407. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17798-0_32

    Chapter  Google Scholar 

  19. Karimkhani, C., et al.: Global skin disease morbidity and mortality: an update from the global burden of disease study 2013. JAMA Dermatol. 153(5), 406–412 (2017)

    Article  Google Scholar 

  20. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56(2), 69–90 (2012)

    Article  Google Scholar 

  21. Kundu, R.V., Patterson, S.: Dermatologic conditions in skin of color: Part I. Special considerations for common skin disorders. Am. Fam. Phys. 87(12), 850–856 (2013)

    Google Scholar 

  22. Mahendraraj, K., Sidhu, K., Lau, C.S.M., McRoy, G.J., Chamberlain, R.S., Smith, F.O.: Malignant melanoma in African–Americans: a population-based clinical outcomes study involving 1106 African–American patients from the surveillance, epidemiology, and end result (SEER) database (1988–2011). Medicine 96(15), e6258 (2017)

    Google Scholar 

  23. Marchetti, M.A., Chung, E., Halpern, A.C.: Screening for acral lentiginous melanoma in dark-skinned individuals. JAMA Dermatol. 151(10), 1055–1056 (2015)

    Article  Google Scholar 

  24. Merler, M., Ratha, N., Feris, R.S., Smith, J.R.: Diversity in faces. arXiv:1901.10436 (2019)

  25. Muthukumar, V.: Color-theoretic experiments to understand unequal gender classification accuracy from face images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  26. Raji, I.D., Buolamwini, J.: Actionable auditing: investigating the impact of publicly naming biased performance results of commercial AI products. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 429–435 (2019)

    Google Scholar 

  27. Rotemberg, V., Halpern, A., Dusza, S.W., Codella, N.C.F.: The role of public challenges and data sets towards algorithm development, trust, and use in clinical practice. Semin. Cutan. Med. Surg. 38(1), E38–E42 (2019)

    Article  Google Scholar 

  28. Stoecker, W.V., Moss, R.H.: Editorial: digital imaging in dermatology. Comput. Med. Imag. Grap. 16(3), 145–150 (1992)

    Article  Google Scholar 

  29. Sun, X., Yang, J., Sun, M., Wang, K.: A benchmark for automatic visual classification of clinical skin disease images. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 206–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_13

    Chapter  Google Scholar 

  30. Tschandl, P., Rosendahl, C., Kittler, H.: Data descriptor: the HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 180161 (2018)

    Article  Google Scholar 

  31. Varshney, K.R.: Trustworthy machine learning and artificial intelligence. ACM XRDS 26(3), 26–29 (2019)

    Article  Google Scholar 

  32. Wilkes, M., Wright, C.Y., du Plessis, J.L., Reeder, A.: Fitzpatrick skin type, individual typology angle, and melanin index in an African population. JAMA Dermatol. 151(8), 902–903 (2015)

    Article  Google Scholar 

  33. Wilson, B., Hoffman, J., Morgenstern, J.: Predictive inequity in object detection. arXiv:1902.11097 (2019)

  34. Wu, X.C., et al.: Racial and ethnic variations in incidence and survival of cutaneous melanoma in the United States, 1999–2006. J. Am. Acad. Dermatol. 65(5), S26.e1–S26.e13 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kush R. Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kinyanjui, N.M. et al. (2020). Fairness of Classifiers Across Skin Tones in Dermatology. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics