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Abstract. Skin disease classification from images is crucial to derma-
tological diagnosis. However, identifying skin lesions involves a variety
of aspects in terms of size, color, shape, and texture. To make mat-
ters worse, many categories only contain very few samples, posing great
challenges to conventional machine learning algorithms and even human
experts. Inspired by the recent success of Few-Shot Learning (FSL) in
natural image classification, we propose to apply FSL to skin disease
identification to address the extreme scarcity of training sample prob-
lem. However, directly applying FSL to this task does not work well
in practice, and we find that the problem can be largely attributed to
the incompatibility between Cross Entropy (CE) and episode training,
which are both commonly used in FSL. Based on a detailed analysis, we
propose the Query-Relative (QR) loss, which proves superior to CE un-
der episode training and is closely related to recently proposed mutual
information estimation. Moreover, we further strengthen the proposed
QR loss with a novel adaptive hard margin strategy. Comprehensive ex-
periments validate the effectiveness of the proposed FSL scheme and the
possibility to diagnosis rare skin disease with a few labeled samples.

Keywords: Skin Disease Classification - Few-Shot Learning - Query-
Relative Loss.

1 Introduction

As a key step in the dermatological diagnosis, skin disease classification is quite
challenging due to the extremely scarce annotations for a large number of cate-
gories. Such complexity in skin disease taxonomy requires a great deal of exper-
tise. In addition, the diagnosis is often subjective and inaccurate even by human
experts, which necessitates the research for computer-aided diagnosis [T0JI4].
Motivated by the unprecedented success of deep neural networks (DNNs), many
researchers resort to deep learning technologies to handle this task [2I7I8]. For
example, Esteva et al. adopt GoogleNet Inception V3 [16] to train a large-scale
skin disease classification network [2]. Liao et al. jointly train skin lesion and
body location classifiers using a multi-task network [8]. However, since DNN-
based methods usually require a significant number of training samples for each
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category, categories with only a few number of samples are often discarded [7].
This reduces the applicability of DNN-based methods, especially for infrequent
skin disease diagnosis.

Shi et al. propose to adopt active learning to reduce the annotation cost [12],
but still need up to 50% of labeled samples to train their model. Alternatively,
Few-Shot Learning (FSL) is usually leveraged to address such tasks with only
a few training samples [I3II5I5/6]. By assuming the availability of a large-scale
auxiliary training set, one can learn generalized patterns and knowledge which
facilitate the learning for unseen tasks. Formally, for each few-shot task, we are
provided with a support set S, a query set @, and an auxiliary set A, where the
support set S contains C different categories and each category has K training
samples, i.e., C-way K-shot, and () contains unlabeled query data. Instead of
conventional minibatch training, FSL is always trained with the episode train-
ing mechanism [I3]. Basically, at each training iteration, we generate an episode
by drawing samples from C' different categories of the auxiliary set A, with K
samples in each category as support samples Si.qin and others as query samples
Qirain- As a crucial step, we need to randomly shuffle the labels for all cate-
gories from episode to episode. Episode training mechanism benefits FSL in at
least two aspects. First, it enables FSL to be trained under similar scenarios as
testing tasks. Second, the labels are randomly shuffled during episode training,
which enables the model to learn category-agnostic representation for a better
generalization ability.

Generally, FSL employs the Cross Entropy (CE) loss as an objective for clas-
sification. Although CE is useful for conventional classification, we find that it is
somewhat incompatible with the episode mechanism. Well-designed FSL meth-
ods trained with CE even perform significantly worse than the baseline methods
1. As we will see, CE classifies the query samples individually and relies highly
on well-trained category-wise representation, a.k.a. proxies in proxy-based met-
ric learning methods which share the similar formulation as CE [9JTT]. The proxy
is an category-wise aggregation of labeled support samples, e.g., the center used
in Prototypical Network (PN). However, accurate proxies could only be obtained
by a large-scale unified labeled dataset under the conventional minibatch train-
ing mechanism. This is hardily fulfilled under the episode training mechanism
since we are only provided with a few training samples with randomly shuffled
labels in each iteration.

To alleviate the problem, we propose a Query-Relative (QR) loss, which
works much better with the episode training mechanism than CE for FSL.

We highlight our main contributions as follows:

— Upon an insightful analysis of the CE loss and episode mechanism, we pro-
pose a Query-Relative (QR) loss to better utilize the cross sample informa-
tion and avoid possible sub-optimal aggregation of negative support samples,
which significantly boosts the FSL performance;

— We develop an adaptive hard margin method for the QR loss to further
penalize the categories with more error similarity connections;
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— We evaluate our methods against a benchmark FSL suite [I], and the exper-
iments strongly validate our analysis and the proposed methods.
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Fig. 1. Block diagram of few-shot learning-based skin disease classification and the
difference between QR and CE loss. CE considers queries individually, while QR takes
the relation across samples into consideration. Moreover, CE aggregates the support
samples into proxies with possible information loss, while QR allows the model to fully
exploit the information of negative support samples guided by the training objective.

2 Methodology

2.1 Discussions on FSL

Cross Entropy (CE) loss is often jointly used with episode mechanism to solve
the FSL tasks. It can be generally formulated as

es(cyi )

=— log ————. 1

£CE 21: 0g Z] es(cj)a:i) ( )

Here, {z1,72,...,2x} € RN are the query embeddings, and {cy, ¢z, ...,co} €
R are the representations for the support categories, where N, C, and d

denote the number of queries, support categories, and feature dimensions, re-
spectively. s(c;,x;) denotes the similarity between the support category proxy
¢; and query sample ;. Different FSL methods have different formulations of
similarity measurement s(-,-) and category proxy c¢ aggregated by the support
samples. For example, PN (Prototypical Network) uses the centers of the sup-
port samples from the j-th category as ¢; and the Euclidean distance as s(-,-),
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Matching Net employs an FCE (Fully Context Embedding) layer to encode the
support samples and chooses cosine similarity for s(-, -), and MAML implements
s(+,-) as a Fully Connected (FC) layer where the j-th weight vector of the FC

layer corresponds to c;. To unify these methods, we normalize z; = H;W and
¢ = CC?'HZ which leads to better performance shown in the recent literature [20].
cT,a:i
Eq. (1) can then be rewritten as min — ), log L;Tx
Z e d Tt

According to Eq. , CE individually classiﬁjes the query samples and com-
pletely relies on the category-wise representation c¢; to train the model. For the
conventional classification task trained with minibatch SGD, such a mechanism
could prompt c; to learn high-level representative features of each category by
exposing them to a large and balanced dataset. Unfortunately, this is not the
case for FSL due to the episode training mechanism. Although episode training
is important for FSL since it empowers FSL with the ability to learn generalized
class agnostic representation and provides similar training scenarios as testing
scenarios, it is also a double-edged sword: it makes c¢; inevitably biased and in-
accurate. The reasons are two aspects: first, c¢; is learned from a few samples in
each episode, e.g., 1 and 5 for 1-shot and 5-shot respectively, and it is difficult to
learn to aggregate support samples to obtain c¢; without losing useful informa-
tion with so few training samples; second, the labels are randomly shuffled for
each episode which limits ¢; to be consistently trained across episodes. There-
fore, ¢; cannot be fully relied on under the episode mechanism and training the
model with CE loss will eventually degrade the performance for FSL. The sub-
optimal performance has been observed and experimentally validated by several
recent benchmark papers for natural images, where well-designed baselines could
achieve similar and even better performance than CE-trained FSL counterparts
[1UT7]. Similar results are also disappointingly observed in the skin disease tasks
according to our experiments in Section

2.2 Query-Relative Loss

We alleviate the above problem from two aspects. First, instead of classifying
the query separately, we unify all samples into a joint objective to allow them
to mutually share information cross samples. Second, we avoid using negative
category proxies which are aggregated by the negative support samples with a
manually designed strategy (e.g., the center of support samples in PN), and the
information of the support samples can then be largely preserved and extracted
with the guidance of the training objective. To this end, we propose the Query-
Relative (QR) loss as follows

1 + 1 _
L = 1 1 —s(cj,x;) s(cjx; ) 9
QR Z og(1+ 2P| Z e + 2N Z e ), (2)

J zfeP; z; EN;

where P; denotes the set of positive query samples that belong to the j-th
category and N; denotes the set of negative query and support samples that are
not from the j-th category. |- | denotes the number of samples in the set.
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We then present an analysis on how our objective improves CE from the two
aforementioned aspects. First of all, Eq. implicitly utilizes the cross sample
information to re-weight each sample. Specifically, taking the derivation w.r.t.
s(cj, }) and s(cj, x,,), we have

e e ") 3)
. + 1 —s(c;xt 1 s(ci,x.
6S(Cj,l‘p) 1+2‘7lezwj—epje (J’i)‘f'mzwi—e]vje(”l)
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Here, we only focus on the absolute value of the gradient. According to Eq. ,
s(cj, x;‘) will induce a large gradient and will be punished if (i) s(c;, a:;) is small;
(ii) s(cj,x;}) is smaller than s(cj,x}) where xj € P;, p # 4; or (iii) s(c;,z;) is
small so that we could focus on intra-class relation. Moreover, a large s(c;j, z; )
will provide s(c;, ;") with tolerance to some extent, which allows our model to
focus on reducing the large similarity of s(c;,z; ). Similar analysis can be per-
formed with s(c;, z; ) based on Eq. , and we omit the detail here. Therefore,
in contrast to CE which deals with each sample separately, QR allows the query
and support samples to share information across each other and category-wisely
re-weights their importance.

Second, note that the negative set N; of each category contains not only the
negative query samples but also the support samples from other categories. This
avoids the information loss caused by the possibly sub-optimal support sample
aggregation and allows the model to learn to utilize the negative support samples
directly by the objective.

It turns out that the QR loss is closely related to Deep Mutual Information
(MI) maximization recently proposed by [4]. Without loss of generality, following
[4], the JSD-based (Jensen-Shannon Divergence) MI estimator between ¢; and
x can be formulated as

L —s(ejmf 1 s(cqi,x:
ACJSDMI:maXﬁ Z —log(1 4 e3> ’L))_|N-| Z log(1 4 e3(¢:%:))
T afer T aren
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Here we use the fact that —log(1 + x) is convex and the Jensen’s inequality.
We can thus derive that the QR loss is actually a lower bound of the JSD MI.
The reason why we do not directly optimize Ljsp w1 is that the re-weighting
mechanism of £jsp M1 does not take both P; and N; into consideration for each
s(cj, x;). We experimentally verify the superiority of our formulation in Sec.
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2.3 Adaptive Hard Margin

The adaptive hard margin is built upon the fact that the cosine similarity be-
tween uniformly distributed normalized samples approaches N (0, 5 d) [19] and is
thus likely to be zero. Therefore, s(c;, ;") should be at least larger than E; and
s(cj, x; ) should be at least smaller than E , where E+ and £ denote the av-
erage of s(c;,z;) with s(cj, ) < 0 and average of s(cj,ac ) Wlth s(cj,zf) >0,
respectively. Based on this obbervatlon we propose a QR loss with onhne Adap-
tive Hard Margin which can be written as

. —s(eja)+E; 1 sej.@y )~ B}
»CQR+marg1n Zlog 2|P‘ Z e ’ +2‘N| Z € )

zf eP; / xz; EN;
(6)
Basically, Eq. @ imposes extra punishment on categories with more positive
samples whose similarities are smaller than random or negative samples, and
negative samples whose similarities are larger than random or positive samples.

3 Experiments

3.1 Datasets

We collect the dermatology images from the Dermnet atlas website E To per-
form few-shot learning, we discard categories with less than 10 samples, which
are required for the 5-way 5-shot setting. Finally, we obtain 20,230 images in
total belonging to 334 different categories. The largest category “seborrheic ker-
atoses ruff” contains 516 images and the smallest categories contain 10 samples.
Detailed statistics of the data can be found in the supplemental material. The
data is manually split into 186 categories for training, 74 for validation, and
74 for testing, respectively. Moreover, to better simulate the scenario of few-
shot learning, we deliberately choose categories with more than 120 samples (38
categories in total) as the training data.

3.2 Benchmark Methods and Experimental Settings

We benchmark the dataset on an FSL suite proposed by [I]. The suite contains
2 strong baseline methods (denoted as baseline and baseline++ following [I])
and 4 FSL methods including Relation Net[I5], Model-Agnostic Meta-Learning
(MAML) [3], Matching Net (MN)[I8], and Prototypical Net (PN)[L3]. The base-
line methods are carefully designed and outperform FSL methods in some cases.
We refer readers to [I] for details. The four FSL methods are regarded as the
state-of-the-art FSL baselines in recent benchmark literature [I7]1], and we train
them with CE as our baselines except for the Relation Net, which is trained with
Mean Square Error (MSE) Loss following the original paper. We apply the pro-
posed QR loss to MN and PN since these two methods have proven to have

3 www.dermnet.com
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superior and stable performance in natural image classification [I]. The model
trained with JSD-based MI maximization Eq. (5)) is denoted as JSD MI, and
models trained with the proposed QR loss Eq. and QR loss with adaptive
hard margin Eq. @ are denoted as QR and QR+M, respectively.

For the network structure, we follow the commonly adopted FSL settings
[15[1]. The feature embedding network used in this paper is a convolutional neu-
ral network which has four convolutional blocks with each block containing a
sequence of a convolutional layer with 64 filters of size 3 x 3, a batch normaliza-
tion layer, a 2 X 2 max-pooling layer and a Leaky ReLU layer. For the experi-
mental settings, the episodic training mechanism is applied to all FSL models,
and 60,000 episodes are constructed in total during training for all methods.
For validation and testing, 600 episodes are randomly constructed from the val-
idation and test set, respectively. We conduct 5-way 1-shot and 5-way 5-shot
classification tasks on the collected Dermnet dataset, and 5 query samples are
provided for each category within each episode for either training and testing.
For optimization, we adopt the Adam algorithm with a learning rate of 0.001.
Experiments are run five times and we report the performance on test set cor-
responding to the best validation results. The average Accuracy, Precision, and
F1 score with 95% confidence interval are reported.

Methods 5-way 1-shot 5-way 5-shot
ACC%  Precision%  F1% ACC% Precision% F1%

Baseline 39.89 +0.80 40.57+1.12 37.16+0.901 59.87+0.904 62.37 +1.10 58.19 +1.01
Baseline++ 42.47 to0.0a 43.70+1.11 40.34+0.93 63.37+0.95 65.80 +1.07 61.75 +1.01
MAML 45.95 t1.06 44.82+1.20 42.18 +1.08 66.93 to0.96 69.24 +1.11 64.92 +1.05
Relation Net 45.50 +1.07 46.36+1.18 44.00+1.07 62.53 +1.02 64.90 +1.11 62.26 +1.05
MN 44.59+0.97 44.96+1.19 41.52+1.00 61.21+0.90 63.15 £1.13 58.29+0.99
MN-+JSD MI  43.28 +1.04 43.26+1.25 40.00+1.05 58.99 +0.04 60.23+1.20 55.78+1.02
MN+QR 48.01 +1.00 48.87+1.13 44.30+1.13 67.09+0.97 69.18 +1.16 64.53 +1.08

MN+QRA+M  49.29 +1.31 49.95+1.05 45.64+1.09 66.83+0.95 69.10 +1.16 64.25 +1.05
MN+QR* 48.66 +1.07 48.86+1.30 44.98+1.11 - - -
MN+QR+M* 49.76 +1.07 49.52+1.32 46.01+1.13 - - -

PN 46.77 £1.01a 46.82+1.06 43.58+1.07 62.06+1.02 63.39 +1.22 59.50 +1.10
PN+JSD MI  47.55 +1.00 47.90+1.25 44.33+1.05 61.15+0.04 61.74+1.16 58.34+1.02
PN+QR 49.85 +1.11 49.53+1.32 46.34+1.14 70.38 +o.96 72.13 +1.08 68.50 +1.05

PN+QR+M 52.41 +1.00 53.21+1.27 49.52 +1.12 71.99+0.57 74.23 +o0.9s 70.30 +0.94
PN+QR* 50.62 +1.10 50.83+1.32 47.16 +1.13 - - -
PN+QR+M* 53.30 £1.11 53.69+1.35 50.45 +1.17 - - -
Table 1. Experimental results on the Derment skin disease classification dataset. *
denotes that the model is trained with 9 query samples per episode. - denotes that the
setting is not applicable. M denotes our methods with an adaptive hard margin.
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3.3 Result Analysis

The experimental results are reported in Table |1} and we draw several interest-
ing points from the results as follows. First of all, the baseline methods with
minibatch training and CE loss perform reasonably well in practice. The FSL
methods trained with CE loss have comparable or slightly better performance.
In contrast, FSL methods trained with the proposed QR loss significantly out-
perform the baseline methods and the FSL methods with CE. For Matching Net,
our QR loss achieves 3.42 % and 5.88 % improvements compared with the CE
loss in terms of accuracy for 5-way 1-shot and 5-way 5-shot tasks. Significant
improvements are also observed for PN, and our QR loss outperforms CE 3.08 %
and 8.32 % for 5-way 1-shot and 5-way 5-shot, respectively. The improvements
are obtained by fully utilizing the cross-sample information and avoiding the in-
formation loss caused by manually designed support sample aggregation during
training. Second, we compare the QR loss with JSD MI. Although the formu-
lations are similar, QR is significantly better than JSD MI. The reason should
be attributed to the fact that JSD MI does not mutually utilize the information
in P; and N;. Third, the adaptive hard margin consistently boosts the perfor-
mance of the models trained by QR. For example, the adaptive hard margin
improves PN trained with QR 2.56 % and 1.61 % for 5-way 1-shot and 5-way
5-shot, respectively. Finally, our method could be further boosted by increasing
the number of queries for both training and testing. Overall, our proposed FSL
methods classify skin disease with only a few available training samples and
makes it possible to diagnose rare diseases using modern neural networks.

3.4 Influence of the number of shots and ways

For simplicity, we only conduct experiments on PN with various ways and shots
and report the accuracy. As shown in Tables [2] and [3] QR has clear advantages
over CE when more samples are available per episode, suggesting that QR can
better utilize the cross sample information.

# shots 1 2 3 4 5 # ways 2 3 5 10 20
CE 46.77 54.04 57.15 59.65 62.06 CE 69.80 59.42 46.77 35.78 24.30

QR 49.85 62.37 66.87 68.95 70.38 QR 72.02 61.57 49.85 40.37 31.31
Table 2. 5-way different-shot. (ACC%) Table 3. Different-way 1-shot. (ACC%)

4 Conclusions

We propose to apply Few-Shot Learning to address the classification for rare skin
diseases. We find that existing FSL methods do not perform significantly better
than the baseline methods. Through careful analysis, we believe the problem
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should be largely attributed to the incompatibility between the episode training
mechanism and cross entropy loss. Therefore, we propose a novel QR loss for
FSL to make fully use of the information across samples and also allow the model
to learn to extract information of the support samples guided by the training
objective. With the proposed QR loss, the state-of-the-art FSL methods perform
consistently better than methods training with the conventional CE loss. Our
work demonstrates the promise of diagnosing rare skin diseases with one or a few
labeled samples. In the future, we will investigate extensions to other medical
classification problems or even natural image classification.
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