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Abstract. Deep neural networks have shown great potential in image
reconstruction problems in Euclidean space. However, many reconstruc-
tion problems involve imaging physics that are dependent on the underly-
ing non-Euclidean geometry. In this paper, we present a new approach to
learn inverse imaging that exploit the underlying geometry and physics.
We first introduce a non-Euclidean encoding-decoding network that al-
lows us to describe the unknown and measurement variables over their
respective geometrical domains. We then learn the geometry-dependent
physics in between the two domains by explicitly modeling it via a bipar-
tite graph over the graphical embedding of the two geometry. We applied
the presented network to reconstructing electrical activity on the heart
surface from body-surface potential. In a series of generalization tasks
with increasing difficulty, we demonstrated the improved ability of the
presented network to generalize across geometrical changes underlying
the data in comparison to its Euclidean alternatives.

Keywords: Geometric Deep Learning · Physics-Based · Inverse Prob-
lems.

1 Introduction

Deep learning has shown state-of-the-art performance in image reconstruction
tasks across a variety of medical modalities [20,18,1,15,10]. These approaches
typically formulate the problems in standard Euclidean image grids. However, in
many problems, the unknown variables of interests and the corresponding mea-
surements are defined over non-Euclidean geometrical domains: their physics-
based relationship, both forward and inverse, is largely reliant on the underlying
geometry. Examples include electrical activity in the heart and the potential it
generates on the body surface [3,12,9], or electrical activity in the brain and its
potential measurements on the skull surface [16]. Standard Euclidean deep learn-
ing neglecting the underlying geometry not only ignores the geometry-dependent
imaging physics, but also has difficulty in generalizing over different geometry.

To design inverse imaging (image reconstruction) networks that can general-
ize across geometry, there are two general approaches. One is to make the network
invariant to geometry by, for instance, an information bottleneck that removes
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geometrical information from the input data [11]. While demonstrating improved
generalization to geometrical changes [11], the treatment of non-Euclidean data
as Euclidean data ties the network to the training mesh and prevents its direct
application to unseen meshes from new patients. Alternatively, one can make the
network equivariant to the geometry. In [3], for instance, the reconstruction of
electrical activity in the heart is formulated and conditioned on 2D image scans
of the heart [3]. Rather than explicitly describing the geometry, this approach
defines non-Euclidean variables at a small region of interest within the Euclidean
image grid. How to extend it to consider the geometry of both the unknown (e.g.,
the heart) and the measurement (e.g., the body), and to explicitly consider the
geometry-dependent physics in between, is not clear.

Graph convolutional neural networks (GCNN) provide an appealing alterna-
tive to solving inverse imaging between non-Euclidean variables defined over geo-
metrical domains [4]. Significant efforts in GCNN have been made for node- and
graph-level classifications, graph embedding, and graph generation [19]. How-
ever, no existing work has considered learning geometry-dependent relationship
between signals defined on two separate graphs, which is a critical component
of achieving physics-based inverse imaging.

In this paper, we present a non-Euclidean inverse imaging (image recon-
struction) network that 1) directly models the unknown and its measurement
over their geometrical domains, and 2) models and learns their inverse rela-
tionship – as informed by the physics – as a function of the geometry. It con-
sists of two novel contributions. First, to describe the spatiotemporal variables
(unknowns and measurements) over their respective geometrical domain, we in-
troduce an encoding-decoding architecture composed of spatial-temporal graph
convolutional neural networks (ST-GCNN) defined separately for each domain.
Second, to learn the geometry-dependent physics in between, we model it with
a bipartite graph between the graphical embedding of the two geometrical do-
mains. We applied the presented method for reconstructing spatiotemporal elec-
trical potential on the ventricular surface from body-surface potential. In syn-
thetic and real-data experiments, we tested the presented network in a series
of generalization tasks with increasing difficulty, and compared it to Euclidean
baselines without and with a geometry-invariant bottleneck [11]. By learning
inverse imaging in a geometry-dependent and physics-informed fashion, the pre-
sented network showed an improved generalization to geometrical changes in the
data.

2 Methodology

Cardiac electrical excitation produces time-varying voltage signals on the body
surface, following quasi-static approximation of the electromagnetism [17]. Given
a pair of heart and torso geometry, the governing physics can be numerically
approximated to relate signals in the heart Xt to those on the body surface Yt:

Yt = HXt ∀t ∈ {1, ..., T}. (1)
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Fig. 1. Illustration of the presented non-Euclidean inverse imaging network.

Note that Xt and Yt live on the 3D geometry of the heart and torso surface,
respectively. The forward operator H defines the physics of their relationship and
is highly dependent on the given heart-torso geometry. Traditional approaches
to reconstructing Xt from Yt starts with this forward model, exploiting the
geometry and physics behind the inverse relationship. When using Euclidean
deep learning for direct inference of Xt from Yt, the network becomes solely
reliant on labeled data pairs, incorporating neither the physics nor the geometry
underlying the problem. The proposed method is set to bridge these gaps by
1) allowing the description of Xt and Yt in their geometrical domains, and 2)
explicitly modeling their physics relationship as a function of the geometry.

As summarized in Fig. 1, we present an encoder-decoder architecture with
ST-GCNNs to embed/generate Yt and Xt over their respective geometry. The
geometry-dependent relationship between the latent variables of Yt and Xt is
learned via a bipartite graph over the graph embedding of the two geometry.

2.1 Encoding-Decoding with ST-GCNNs

As Xt and Yt are temporal sequences living on 3D geometry, we describe their
generation/embedding with ST-GCNNs that consist of interlaced graph convolu-
tion in space and regular convolution in time. As illustrated in Fig. 1, both spatial
and temporal dimensions are reduced/expanded during encoding/decoding.

Geometrical Representation in Graphs: We represent triangular meshes of
the heart and torso as two separate undirected graphs: G = (V, E ,U,F), where
vertices V consist of all V mesh nodes and edges E describe the vertex connection
as defined by the triangular mesh. U ∈ [0, 1]V×V×3 consists of edge attributes
u(i, j) between vertex i and j as normalized differences in their 3D coordinates
((xi − xj)/s, (yi − yj)/s, (zi − zj)/s) if an edge exists, and 0 otherwise, where
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s =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. F ∈ RV×M×T represents the time
sequences of node features across all vertices.

Spatial Graph Convolution: A continuous spline kernel for spatial convo-
lution is used such that it can be applied across graphs [8]. Given graph node
features f ∈ RV×M at each time instant, the convolution kernel is defined as:

gl(u) =
∑
p∈P

wp,lBp(u), (2)

where 1 ≤ l ≤M , the spline basis Bp(u) =
∏d
r=1N

m
r,pr (u) with Nm

r,pr denoting d
open B-spline basis of degree m based on equidistant knot vectors, P = (Nm

1,r)r×
...×(Nm

d,r)r is the Cartesian product of the B-spline bases, and wp,l are trainable
parameters. Given kernel g = (g1, ..., gM ), spatial convolution for vertex i ∈ V
with its neighborhood N(i) is defined as

(fl ∗ gl)(i) =
∑

j∈N(i),p∈P(u(i,j))

fl(j) · gl(u(i, j)). (3)

Since the B-spline basis in equation (2) is conditioned on local geometry, the
learned kernel can be applied across graphs and the convolution incorporates
geometrical information within the graph. This spatial convolution is indepen-
dently applied to each time frame of the signal sequence in parallel.

To make the network deeper and more expressive, we introduce residual
blocks here to pass the input of spatial convolution through a skip connection
with 1D convolution before adding it to the output of the spatial convolution.

Temporal Modeling: After spatial convolution, temporal convolution using
standard 1D convolution is applied to the time sequence for each node and
feature. The number of filters is set to compresses the time sequence in dimension
in the encoder, while expanding in the decoder. The geometry graph remains
the same for the complete temporal sequences.

Hierarchical Graph Composition: To allow pooling and unpooling in space,
we further introduce a hierarchical graph representation of the two geometry.
While various graph clustering [7] and pooling methods [19] exist, a unique
constraint needs to be met here due to the underlying physics: the topology of the
geometry must be preserved in its hierarchical representations to prevent non-
physical spatial propagation of signals. Here, we obtain hierarchical geometry
representations by specialized mesh coarsening method in CGAL [5,14].

The hierarchical graph representation is predefined and stored in matrices to
allow efficient matrix multiplications for pooling/unpooling [6]. If Go is a graph
with N1 vertices and Gc is its coarsened graph with N2 vertices, we use a binary
matrix P ∈ RN1×N2 , where Pij = 1 if vertex i in Go is grouped to vertex j
in Gc, and Pij = 0 otherwise. Given feature map fo ∈ RN1×M over Go and
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fc ∈ RN2×M over Gc, the pooling operation is defined by fc = PTn fo and the
unpooling operation is defined by fo = Pfc, where PTn is column normalized
from P.

Summary: As summarized in Fig. 1, each ST-GCNN block consists of spatial
graph convolution, temporal convolution, and spatial pooling/unpooling as de-
scribed above. Using these building blocks, we obtain an encoder that embeds
body-surface signal Yt over its torso geometry, and a decoder that generates
heart-surface potential Xt over its heart geometry. Next, we learn the physics-
based relationship between the two latent space as a function of their geometry.

2.2 Learning Geometry-Dependent Physics in Latent Space

As explained earlier, the physics between Xt and Yt is heavily reliant on the
underlying heart-torso geometry: according to equation (1), the potential on one
torso node can be represented as a linear combination of the potential from all
heart nodes, where the coefficients are determined by the relative position be-
tween each pair of torso-heart nodes. We assume the linearity to hold between
the heart and torso signals in the latent space during inverse imaging, and ex-
plicitly model it as a function of the relative position between embedded heart
and torso geometry, where a quadratic function exists between the coefficients
of the linear function and the geometry.

To do so, we construct a bipartite graph where the edge exists between each
pair of heart and torso vertices from their respective graph embedding: the edge
attribute u(i, j) between torso vertex i and heart vertex j thus describes their
relative geometrical relationship. The bipartite graph is also learned using the
complete temporal sequences. For latent representation zh(i) on vertex i of the
latent heart mesh, we define it as a linear combination of latent representation
zb(j) across all vertices j of the latent torso mesh:

zh(i) =
∑
j

zb(j) · ĥ(u(i, j)), (4)

where the coefficients ĥ(u(i, j)) are dependant on the relative position u(i, j)
between the two graphs. Aside from being a physics-informed function, this geo-
metric parameterization allows the learned function to generalize across different
torso-heart geometry. None of this would be achievable by, for instance, using
fully connected layers between zb and zh. Exploiting the similarity between eq.(4)
and eq.(3), we recast linear relationship in eq.(4) using spline convolution, with

the geometry-dependent coefficients ĥ learned as the spline convolution kernel.

2.3 Loss Function

Denoting the encoder as zb = Eθ(Y), the geometry-dependent inverse function
as zh = hρ(zb), and the decoder as as X = Dφ(zh), parameters θ, ρ and φ of
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the network are optimized by minimizing the mean square error between the
reconstructed X̂i on given pairs of training data {Xi,Yi}Ni=1:

L =
∑
i

||Xi −Dφ (hρ (Eθ (Yi))) ||22. (5)

3 Experiments

We design a series of generalization tasks of increasing difficulty. In specific, we
trained the network using synthetic data simulated on a specific pair of heart-
torso geometry, including geometrical variations introduced by rotating the heart
along the longitudinal axis (z-axis) for a predefined range. We then tested the
trained network regarding generalization to: 1) synthetic data simulated on the
same heart-torso geometry but with z-axis heart rotations beyond the training
range, 2) synthetic data simulated on the same heart-torso geometry but with
novel heart rotations along frontal axis (x-axis) and sagittal axis (y-axis), 3)
synthetic data simulated on new heart-torso geometry from new patients, and
4) real data on different heart-torso geometry.

The first two tests considered comparisons to Euclidean encoding-decoding
networks [11], both in a deterministic formulation and in a stochastic formulation
with improved invariance to input geometry. These Euclidean networks will not
apply without re-training on the new geometry in the last two tests.

Models and Training: In all experiments, the presented network consists of
three ST-GCNN blocks and two standard convolutional layers in the encoder,
one spline convolutional layer in the inverse block, and four ST-GCNN blocks
and two standard convolutional layers in the decoder. We used ELU activation,
ADAM optimizer [13], and a learning rate of 5× 10−4. The Euclidean baselines
followed the architectures presented in [11], which consist of cascaded LSTMs
and fully connected layers in the encoder and decoder.

For training, we generated pairs of simulated potential data on a specific
heart-torso mesh. On the heart, we simulated spatiotemporal propagation se-
quence of action potential by the Aliev-Panfilov (AP) model [2], considering a
combination of 38 different origins of activation and 16 spatial distribution of
scar tissue in the heart. We then rotated the heart by -2◦ to 2◦ around the z-axis,
obtaining approximately 2700 sets of different body-surface potential embody-
ing changes of heart orientations in the data. All body-surface potential were
corrupted with 20dB Gaussian noises for inverse imaging. Using NVIDIA Tesla
T4 with 16 GB memory, the geometric model took 3 days for training.

Synthetic data for testing were generated in a similar fashion, with additional
geometry changes as detailed in later sections. The reconstruction accuracy was
measured by the mean square error (MSE) and correlation coefficient (CC) be-
tween the reconstructed and actual potential sequence on the heart surface.
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Fig. 2. Comparison of reconstruction accuracy among the three comparison models in
test data with A) heart rotations outside training range, and B)-C) novel rotations not
seen in training. X-axis represents the degree of rotation relative to training.

Fig. 3. Reconstructed electrical activity by three comparison models when z = -19◦.

Generalization to Rotations Outside Training Range: We first applied
the trained models to body-surface potential data generated when the heart was
rotated by -20◦ to 20◦ around the z-axis, a range far outside that considered
in training. Fig. 2A summarizes the quantitative metrics of the three models
on approximately 22,000 test cases, against the change in heart rotations from
training data. As shown, the presented method (red) outperformed the deter-
ministic (green) and stochastic (blue) Euclidean baseline in all metrics for all
heart rotations. The standard deviation of the geometric method lies in between
that of deterministic and stochastic baseline.
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Fig. 4. Accuracy of reconstruction on training geometry (1) and new geometry (2/3).

Generalization to Novel Rotations: We then tested the trained models on
approximately 66,000 body-surface data generated from novel heart rotations
around the x-axis (-20◦ to +40◦) and y-axis (-20◦ to +40◦). As summarized in
Fig. 2B-C, the presented model (red) significantly outperformed the two Eu-
clidean models in all metrics. Furthermore, we observe in Fig. 2B that the geo-
metric method performs better as the test set deviates more from the training
set (up to 40 degree of rotation). This supports that, as test data move further
away from training, the gain in the generalization ability of the presented method
would become more significant in comparison to its Euclidean alternatives. The
standard deviations of the three models are comparable.

Generalization to New Geometry: We then moved to apply the trained
network to simulated data generated on two new heart-torso meshes. This rep-
resents a realistic scenario where the network trained on a group of patients
will be applied to new patients. Fig. 4 provides box plots of the two metrics
obtained on the two new geometry over, respectively, 491 and 444 test data.
Despite a drop in performance in comparison to the earlier results on the train-
ing geometry, reasonable accuracy was achieved considering the difficulty of the
generalization task. Note that Euclidean networks will not be applicable here
unless being re-trained on data generated on the new geometry [11].

Generalization to Real Data: Finally, we tested the presented network on
in-vivo 120-lead body-surface potential data obtained on two patients with scar-
related ventricular arrhythmia. Since the heart-torso geometry of patient ]1 was
used in training, we were able to apply the Euclidean baselines for comparison
purpose. From each reconstructed potential sequence on each patient, we iden-
tified the region of scar tissue by nodes whose activation was shorter than a
predefined duration. The results summarized in Fig. 5 demonstrated the ability
of the presented network to not only generalize across geometry but across the
shifts between simulated and real data, approximating the location of scar tissue
with evident visual improvement over its Euclidean alternatives.
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Fig. 5. Region of scar identified from reconstructed potential sequence on a) the train-
ing patient and b) a new patient. The ground truth was from in-vivo voltage mapping.

4 Conclusion

In this work, we present a novel non-Euclidean network for learning geometry-
dependent and physics-based inverse imaging between spatiotemporal variables
living on 3D geometrical domains. In generalization tests with increased diffi-
culty, we demonstrated the ability of the presented network to better generalize
to unseen geometrical variations in comparison to its Euclidean alternatives,
and to directly apply to new geometry which is not possible with Euclidean
approaches. An immediate future work is to explore the use of fine-tuning with
a small number of labeled data in order to improve the performance of the
network when applying it to new patients. To our knowledge, this is the first
geometry-dependent inverse imaging network over non-Euclidean domains and
its application to reconstructing cardiac electrical activity from surface potential.
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