Skip to main content

A New Metric for Characterizing Dynamic Redundancy of Dense Brain Chronnectome and Its Application to Early Detection of Alzheimer’s Disease

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Graph theory has been used extensively to investigate information exchange efficiency among brain regions represented as graph nodes. In this work, we propose a new metric to measure how the brain network is robust or resilient to any attack on its nodes and edges. The metric measures redundancy in the sense that it calculates the minimum number of independent, not necessarily shortest, paths between every pair of nodes. We adopt this metric for characterizing (i) the redundancy of time-varying brain networks, i.e., chronnectomes, computed along the progression of Alzheimer’s disease (AD), including early mild cognitive impairment (EMCI), and (ii) changes in progressive MCI compared to stable MCI by calculating the probabilities of having at least 2 (or 3) independent paths between every pair of brain regions in a short period of time. Finally, we design a learning-based early AD detection framework, coined “REdundancy Analysis of Dynamic functional connectivity for Disease Diagnosis (READ\(^3\))”, and show its superiority over other AD early detection methods. With the ability to measure dynamic resilience and robustness of brain networks, the metric is complementary to the commonly used “cost-efficiency” in brain network analysis.

This work is supported by NIH grants EB022880, AG041721, AG042599 and AG049371.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247 (2013)

    Google Scholar 

  2. Dai, Z., et al.: Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol. Aging 75, 71–82 (2019)

    Article  Google Scholar 

  3. Adeli, H., Ghosh-Dastidar, S., Dadmehr, N.: Alzheimer’s disease and models of computation: Imaging, classification, and neural models. J. Alzheimers Dis. 7(3), 187–199 (2005)

    Article  Google Scholar 

  4. Gauthier, S., et al.: Mild cognitive impairment. Lancet 367(9518), 1262–1270 (2006)

    Article  Google Scholar 

  5. Calhoun, V.D., Miller, R., Pearlson, G., Adalı, T.: The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84(2), 262–274 (2014)

    Article  Google Scholar 

  6. Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)

    Article  Google Scholar 

  7. Binnewijzend, M.A., et al.: Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 33(9), 2018–2028 (2012)

    Article  Google Scholar 

  8. Meier, J., Tewarie, P., Van Mieghem, P.: The union of shortest path trees of functional brain networks. Brain Connectivity 5(9), 575–581 (2015)

    Article  Google Scholar 

  9. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  10. Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)

    Article  Google Scholar 

  11. Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)

    Article  Google Scholar 

  12. Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24(1), 49–62 (2014)

    Article  Google Scholar 

  13. Stam, C.J., Jones, B., Nolte, G., Breakspear, M., Scheltens, P.: Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17(1), 92–99 (2006)

    Article  Google Scholar 

  14. Jie, B., Liu, M., Zhang, D., Shen, D.: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis. IEEE Trans. Image Process. 27(5), 2340–2353 (2018)

    Article  MathSciNet  Google Scholar 

  15. Williams, N.J., Daly, I., Nasuto, S.: Markov model-based method to analyse time-varying networks in EEG task-related data. Front. Comput. Neurosci. 12, 76 (2018)

    Article  Google Scholar 

  16. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  17. Chao-Gan, Y., Yu-Feng, Z.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4 (2010)

    Google Scholar 

  18. Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29(3), 162–173 (1996)

    Article  Google Scholar 

  19. Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S.W., Shen, D.: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum. Brain Mapp. 38(10), 5019–5034 (2017)

    Article  Google Scholar 

  20. Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. NeuroImage 82, 403–415 (2013)

    Article  Google Scholar 

  21. Leonardi, N., Van De Ville, D.: On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage 104, 430–436 (2015)

    Article  Google Scholar 

  22. Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)

    Article  Google Scholar 

  23. Petersen, R.C., et al.: Current concepts in mild cognitive impairment. Arch. Neurol. 58(12), 1985–1992 (2001)

    Article  Google Scholar 

  24. Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using weka. Bioinformatics 20(15), 2479–2481 (2004)

    Article  Google Scholar 

  25. Chen, X., Zhang, H., Gao, Y., Wee, C.Y., Li, G., Shen, D.: Alzheimer’s disease neuroimaging initiative: high-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 37(9), 3282–3296 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 165 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghanbari, M. et al. (2020). A New Metric for Characterizing Dynamic Redundancy of Dense Brain Chronnectome and Its Application to Early Detection of Alzheimer’s Disease. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics