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Abstract

Advanced diffusion models for tissue microstructure are widely employed to study brain disorders. 

However, these models usually require diffusion MRI (DMRI) data with densely sampled q-space, 

which is prohibitive in clinical settings. This problem can be resolved by using deep learning 

techniques, which learn the mapping between sparsely sampled q-space data and the high-quality 

diffusion microstructural indices estimated from densely sampled data. However, most existing 

methods simply view the input DMRI data as a vector without considering data structure in the q-

space. In this paper, we propose to overcome this limitation by representing DMRI data using 

graphs and utilizing graph convolutional neural networks to estimate tissue microstructure. Our 

method makes full use of the q-space angular neighboring information to improve estimation 

accuracy. Experimental results based on data from the Baby Connectome Project demonstrate that 

our method outperforms state-of-the-art methods both qualitatively and quantitatively.
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1 Introduction

Diffusion MRI (DMRI) is capable of measuring the signal attenuation caused by the 

anisotropic motion of water molecules in the human nervous system [1-3]. This makes 

DMRI a unique non-invasive imaging technique for in vivo examination of brain tissue 

microstructure and white matter pathways. With advanced diffusion models [4-8], DMRI 

affords rich characterizations of the brain, providing biomarkers useful for diagnosis of brain 

disorders. However, many microstructure models, e.g., diffusion kurtosis imaging (DKI) [4] 
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and neurite orientation dispersion and density imaging (NODDI) [5], require DMRI data 

densely sampled in q-space, i.e., multi-shell data with a sufficient angular resolution. The q-

space sampling density is determined by the number of acquired diffusion-weighted images 

(DWIs). Increasing the number of DWIs will inevitably prolong the acquisition time, which 

can be prohibitive in real-world applications.

Deep learning (DL) techniques have been employed to improve microstructural estimation 

without requiring dense q-space sampling [9-15]. A typical example is q-DL [9], which 

utilizes a multilayer perceptron to learn the relationship between sparsely sampled q-space 

data and high-quality microstructure indices estimated from densely sampled q-space data, 

thus reducing the acquisition time. Moreover, time-consuming model fitting is replaced by 

an efficient network. However, this method simply views the DMRI signals in a voxel as a 

vector without considering q-space data structure. Signal correlation between angular 

neighbors is overlooked in the process of microstructural estimation.

To overcome this limitation, we represent DMRI data using graphs and then utilize graph 

convolutional neural networks (GCNNs) to estimate tissue microstructure. Specifically, we 

first represent q-space signal measurements using a graph that encodes the geometric 

structure of q-space sampling points. We then utilize residual GCNNs to learn the mapping 

between sparsely sampled q-space data and high-quality estimates of microstructure indices. 

Our method is capable of not only reducing the data acquisition time but also accelerating 

the estimation procedure. Thanks to the graph representation, our method explicitly takes 

into account the q-space data structure and harnesses information from angular neighbors to 

improve the estimation accuracy of tissue microstructure. We evaluate our method using data 

from the Baby Connectome Project [16,17]. The results indicate that our method yields 

microstructural estimates with remarkably improved accuracy.

2 Methods

In this section, we will first show how to represent DMRI data using graphs. We will then 

introduce graph Fourier analysis and its application to fast and localized spectral filtering 

[18], which is the basis of GCNNs and has been applied in a number of DMRI data 

prediction tasks [19-22]. Finally, we will describe our network architecture in detail.

2.1 Graph Representation of DMRI Data

A graph can be denoted as G = {ℰ, V, W }, where V = {vi ∈ ℳ : i = 1, …, N} is a set of points 

on a manifold ℳ, ℰ ⊂ V × V is a set of edges connecting the vertices, and 

W = (wi, j) ∈ ℝN × N is an adjacency matrix, which is symmetric with weight wi,j > 0 when 

nodes i and j are connected.

Figure 1 illustrates the graph representation of q-space. Similar to [23-25], to represent 

DMRI data using graphs, we define the adjacency weight between two nodes (i.e., sampling 

points) i and j in q-space using two Gaussian kernels, accounting for differences in gradient 

directions and diffusion weightings, i.e.,
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wi, j = exp − 1 − (qi
Tqj)2

2σa2
exp − ( bi − bj)2

2σb
2 , (1)

where qi = qi ∕ ‖qi‖ is a normalized wavevector with qi ∈ ℝ3, bi = t∣qi∣2 is the corresponding 

b-value with diffusion time t, σa and σb are two parameters controlling the bandwidths of 

two Gaussian kernels. Our formulation of the adjacency weight encourages a large weight to 

be assigned to two nodes sharing similar gradient directions and diffusion weightings. In this 

way, the q-space is represented as a graph G that encodes the geometric structure of q-space 

sampling points, and the DMRI signals in one voxel can be viewed as a function f defined on 

G.

2.2 Graph Fourier Analysis

The graph Laplacian, L, is the key operator in graph Fourier analysis. Following [18], we 

define L = D − W, where D = diag{d1, d2 … , dN} is a degree matrix with di =Σj wi,j. The 

graph Laplacian can be further normalized using

L = I − D−1 ∕ 2W D−1 ∕ 2, (2)

where I is an identity matrix. We perform eigen decomposition for L to obtain L = UΛU⊤, 

where U and Λ are matrices containing the eigenvectors and eigenvalues, respectively.

As discussed in [18], U can be viewed as the basis for graph Fourier transform (GFT). 

Therefore, we define the forward and inverse GFTs as f = UTf and f = Uf , respectively, 

where f  is the Fourier coefficients. The convolution theorem states that convolution is 

equivalent to point-wise multiplication in the transform domain. This serves as the basis for 

spectral graph convolution. Given a convolution kernel function h, we have

ℎ ∗ f = U(UTℎ ⊙ UTf) = U(ℎ ⊙ f) = U(diag(ℎ)UTf), (3)

where ⊙ represents a point-wise product and diag(ℎ) is a diagonal matrix with diagonal 

elements specified by ℎ. However, this framework suffers from two limitations: (i) The eigen 

decomposition and forward/inverse GFT are computationally expensive; and (ii) The 

convolution is expected to be localized, but is not guaranteed to be so.

2.3 Fast and Localized Spectral Filtering

To address these two limitations, a fast and localized spectral filtering technique was 

proposed in [18]. Specifically, replacing diag(ℎ) with another diagonal matrix, gθ(Λ), 

parametrized by θ, we then have

ℎ ∗ f = U(gθ(Λ)UTf) = gθ(UΛUT)f = gθ(L)f . (4)

The filter is now a function of the graph Laplacian, avoiding eigen decomposition and 

forward/inverse GFT. Computational complexity is therefore significantly reduced.
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Direct learning of θ involves a complexity of O(N) and does not guarantee localized filters. 

These problems can be resolved by using a polynomial filter defined as

gθ(L) = ∑
k = 0

K
θkLk, (5)

where θ = [θ0, θ1, …, θK] ∈ ℝK + 1 is a vector of polynomial coefficients. This reduces the 

learning complexity to O(K). Based on Parseval’s theorem [18], smoothness in the spectral 

domain corresponds to the localization in the spatial domain. More specifically, the spectral 

filter approximated by the K-th order polynomials of the Laplacian is exactly K-localized. 

Following [18], we utilize Chebyshev polynomials Tk(·) to design the filter, i.e.,

gθ(L)f = ∑
k = 0

K
θkTK(L)f, (6)

where L is the scaled Laplacian, defined as L = 2L ∕ λmax − I with λmax being the maximal 

eigenvalue of L. Chebyshev polynomials have a recurrence relation, i.e., Tk(λ) = 2λTK(λ) − 

Tk−2(λ) with T1(λ) = λ and T0(λ) = 1. Finally, a feature map f(l) at the l-th graph 

convolutional layer is given by

f(l) = ξ ∑
c = 1

C
gθc(l)(L)fc

(l − 1) + b(l) , (7)

where ξ(·) is a non-linear activation function, fc
(l − 1) is the c-th channel feature map at the (l 

− 1)-th layer, θc
(l) is the corresponding learning parameters, and b(l) is the bias.

2.4 Network Architecture

An overview of our network architecture is shown in Fig. 2. The input is sparsely sampled q-

space data and the output is a vector of microstructural estimates. The input data is first fed 

to a graph convolutional layer followed by a leaky ReLU (LReLU) activation function. This 

is followed by two residual blocks, each with a graph coarsening layer. Each residual block 

consists of two graph convolutional layers, a LReLU activation function, and a residual skip 

connection to improve training [26]. We utilize the method described in [18] for graph 

coarsening to increase the receptive field, similar to the pooling operation in conventional 

CNNs for 2D/3D images [27]. After the second graph coarsening, a final graph convolution 

layer is employed to integrate the feature maps into a single map. The features from the map 

are fed into two fully-connected (FC) layers to predict the microstructure indices. The 

number of nodes in the first FC layer is identical to the number of elements in the input to 

the layer. The number of nodes in the second FC layer is determined by the number of 

microstructure indices that need to be estimated. As commonly done in regression tasks, we 

train the model using ℓ1 loss:
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ℒ = 1
N ∑

i = 1

N
∣ Mi − Mi ∣ , (8)

where Mi is the i-th ground truth microstructural index, Mi is the corresponding estimate, 

and N is the number of microstructural indices.

3 Experiments

3.1 Dataset

Our dataset consisted of 13 subjects randomly selected from the Baby Connectome Project 

(BCP) [16,17]. We utilized 5 of them for training and the rest for testing. All data were 

acquired using a Siemens 3T Magnetom Prisma MR scanner with the following imaging 

protocol: 140 × 105 imaging matrix, 1.5 × 1.5 × 1.5 mm3 resolution, TE = 88 ms, TR = 

2,365 ms, b = 500, 1000, 1500, 2000, 2500, 3000s/mm2, and a total of 144 non-collinear 

gradient directions. All enrolled subjects had written informed consent provided by parents/

guardians. The experimental protocols were approved by the Institutional Review Board of 

the University of North Carolina (UNC) School of Medicine.

3.2 Implementation Details

We trained our network to predict NODDI [28] indices, including intra-cellular volume 

fraction (ICVF), isotropic volume fraction (ISOVF), and orientation dispersion index (ODI). 

To construct the training data, we computed NODDI indices from the complete DMRI data 

(144 DWIs) of all training subjects using AMICO [29] as prediction targets. The DMRI data 

was subsampled uniformly in q-space with factors 2 (72 DWIs), 3 (48 DWIs), and 4 (36 

DWIs). Finally, we randomly selected 20, 000 voxels from the brain region of each training 

subject to form our training dataset with a total of 100, 000 samples. The testing dataset was 

created in a similar way, but using the DMRI data of testing subjects. Note that the network 

was trained separately for the different subsampling rates.

The proposed network was implemented using TensorFlow 1.2 [30]. In all experiments, we 

trained the network using the ADAM optimizer [31] with an initial learning rate of 0.01 and 

an exponential decay rate of 0.95. Other hyperparameters were set as follows: (1) The 

polynomial order K was set to 10. (2) The number of feature maps for each residual block 

was set to 8. (3) We set σa = 1 − cos2(30∘) ≈ 0.5, where the angular degree 30° was 

determined by grid search from 10° to 50°. (4) Since our data is shell-sampled, we set σb to 

a small value, 0.1. An early stopping strategy was adopted to prevent over-fitting. The 

network was trained using a computer equipped with an NVIDIA GeForce GTX 1080 Ti 

GPU with 11 GB RAM. We utilized AMICO and MLP as our comparison baselines. 

Multilayer perceptron (MLP) was implemented based on [9] with the same network 

architecture and hyper-parameters.

3.3 Results

We first performed quantitative evaluations using the peak signal-to-noise ratio (PSNR) as 

the metric. The results, shown in Fig. 3, indicate that GCNN outperforms two baseline 

Chen et al. Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methods in all cases. Particularly, the overall PSNR values for all indices, shown in the right 

of Fig. 3, indicate that GCNN improves estimation accuracy for all three subsampling rates. 

In contrast, AMICO fails to provide satisfactory results when the subsampling rate is larger 

than 2. MLP gives poor performance, in comparison with the other two methods, when the 

subsampling rate is 2.

The ICVF maps, shown in Fig. 4, further confirm our conclusions based on Fig. 3. For all 

subsampling factors, GCNN gives high-quality ICVF maps that are close to the gold 

standard. For better visualization, we computed the ICVF error maps for different methods 

and subsampling factors. The results, shown in Fig. 4, indicate that GCNN reduces 

estimation errors.

Finally, we compared the computation times of different methods. All the methods were 

tested using a computer equipped with a four-core 2.9 GHz Intel Core i7 CPU. For fair 

comparison, MLP and GCNN were set to operate in CPU mode. The results, shown in Table 

1, indicate that both MLP and GCNN reduce the computation time significantly. 

Specifically, the two DL methods are at least 70 times faster than AMICO, facilitating 

microstructural estimation in large-scale studies.

4 Conclusion and Future Work

In this work, we have proposed a framework for estimating tissue microstructure using graph 

CNNs. Our method makes full use of information from angular neighbors in q-space, and 

thus improves estimation accuracy. The experiments on BCP data indicate that our method 

yields microstructure index maps with improved quality.

In the future, we will evaluate our network performance thoroughly by performing cross-

validation on some well-known DMRI datasets, e.g., Human Connectome Project [32]. We 

will also investigate the influence of hyper-parameters, including the polynomial order and 

the number of filters. Finally, we will utilize our network to predict microstructure indices 

given by other diffusion models, such as DKI [4].
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Fig. 1. 
Graph representation of q-space.
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Fig. 2. 
An overview of the proposed GCNN.
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Fig. 3. 
Average PSNR values computed across the eight testing subjects.
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Fig. 4. 
Visual comparison of ICVF maps and associated error maps.
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Table 1.

Computation time based on totally 395,515 voxels in the brain region of a randomly selected testing subject.

AMICO MLP GCNN

Time (s) 2,252.3 19.2 32.1
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