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Abstract

Most brain microstructure models are dedicated to the quantification of white matter 

microstructure, using for example sticks, cylinders, and zeppelins to model intra- and extra-axonal 

environments. Gray matter presents unique micro-architecture with cell bodies (somas) exhibiting 

diffusion characteristics that differ from axons in white matter. In this paper, we introduce a 

method to quantify soma microstructure, giving measures such as volume fraction, diffusivity, and 

kurtosis. Our method captures a spectrum of diffusion patterns and scales and does not rely on 

restrictive model assumptions. We show that our method yields unique and meaningful contrasts 

that are in agreement with histological data. We demonstrate its application in the mapping of the 

distinct spatial patterns of soma density in the cortex.

1 Introduction

Biophysical models utilizing diffusion magnetic resonance imaging (dMRI) are powerful 

tools for mapping brain microstructure, affording insights into tissue architecture [1–5] and 

revealing pathological and developmental patterns [6]. The focus of most microstructure 

models is white matter, where water molecules diffuse directionally. In gray matter, the 

microstructure is more heterogeneous, involving somas (cell bodies), dendrites, glial cells, 

unmyelinated axons, etc. Models dichotomizing gray matter signal as either extra-neurite or 

intra-neurite suffer from model simplification and are bound to bias microstructure 

estimates.

It has been shown for the first time in [7] that intra-soma diffusion can be modeled as a 

separate compartment distinct from intra-neurite and extra-neurite compartments. The soma 

and neurite density imaging (SANDI) [7] model relies on the assumptions that extra-neurite 

diffusion is isotropic and that intra-soma diffusivity is similar to that of free water. These 

assumptions do not hold in practice as extra-neurite diffusion are shown to be anisotropic 

[2,4,5] and intra-soma diffusion is isotropic and restricted [8]. In this paper, we demonstrate 

that spherical mean spectrum imaging (SMSI) [1,2] can be extended to quantify intra-soma 
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diffusion. SMSI captures a spectrum of diffusion patterns from coarse to fine scales. We 

extended SMSI for quantification of soma microstructure, giving measures such as volume 

fraction, diffusivity, and kurtosis. Our method captures a spectrum of diffusion patterns and 

scales and does not rely on restrictive assumptions, such as fixed compartment number and 

diffusivity. We show that our method yields unique and meaningful contrasts that are in 

agreement with histological data. We demonstrate its application in mapping the distinct 

spatial patterns of soma density in the cortex.

2 Method

2.1 Soma Compartment Model

As observed in the spherical mean technique (SMT) [3], the spherical mean of the dMRI 

signal Sb only depends on b-value and diffusivity but not the fiber orientation distribution. 

For a micro-environment with diffusion that can be represented using a tensor model, the 

spherical mean is defined as

Sb
S0

= ∫
0

1
exp −bλ⊥ exp −b λ∥ − λ⊥ x2 dx (1)

= ∫
0

1
ℎb λ∥, λ⊥, x dx = ℎb λ∥, λ⊥ , (2)

where λ∥ is the parallel diffusivity and λ⊥ is the perpendicular diffusivity [3]. SMSI [1] 

views the spherical mean as a linear combination of contributions from multiple micro-

environments, i.e.,

Sb = S0∑
i

ν i ℎb λ∥ i , λ⊥ i . (3)

The i-th micro-environment is associated with parallel diffusivity λ∥[i], perpendicular 

diffusivity λ⊥[i], and volume fraction ν[i]. Different sub-spectra can be derived from the 

spherical mean spectrum as follows:

• The intra-neurite (neu) diffusion sub-spectrum with high parallel and low to no 

perpendicular diffusion, typical in neurites (axons and dendrites) and commonly 

represented as “sticks” or cylinders with τ−2λ∥[i] ≥ λ⊥[i] ≥ 0 where τ is the 

geometric tortuosity [9].

• The extra-cellular (ec) diffusion sub-spectrum with high parallel and mod-erate 

perpendicular diffusion, typical in extra-cellular space and commonly 

represented as zeppelins with λ∥[i] > λ⊥[i] > τ−2λ∥[i]. Unlike SANDI [7], this 

condition allows the extra-cellular compartment to be anisotropic, as widely 

shown in [1,4,5].

• The intra-soma (is) diffusion sub-spectrum with slow isotropic diffusion, 

represented as spheres with diffusion that is more restricted than free water [7], 
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i.e., λ∥[i] > λ⊥[i] ≤ 1 μm2/ms. This range covers typical diffusivity within cell 

bodies [8].

• The fast-isotropic (fi) diffusion sub-spectrum including free-water diffusion, 

represented by spheres with 2 μm2/ms ≤ λ∥[i] > λ⊥[i] ≤ 3 μm2/ms.

Figure 1 illustrates the model.

2.2 Implementation Details

SMSI solves for the volume fraction ν[i] via elastic net

ν = arg min
ν ⪰ 0

A
γ2I ν − S

0 2

2
+ γ1 diag w ν 1, (4)

where A = ℎb λ∥ 1 , λ⊥ 1 , ℎb λ∥ 2 , λ⊥ 2 , … ∈ ℝn × p is a dictionary with atoms 

representing spherical mean signals of micro-environments covering the different sub-

spectra as described above. n is the number of b-shells and p is the number of atoms. w is a 

weight vector and γ1 and γ2 are tuning parameters that control the contributions of the ℓ1 

and ℓ2 regularization terms, respectively.

It has been reported that the spherical mean signal from linear encoding dMRI can be 

ambiguous [10]. That is, within the typical range of b-values (b ≤ 3000 s/mm2), the spherical 

mean signal of an anisotropic tensor can be indistinguishable from the spherical mean signal 

of a combination of multiple isotropic tensors with different diffusivity values. We address 

this problem by using the full direction-sensitized diffusion signal to disambiguate between 

anisotropic and isotropic diffusion.

Weighting with Full Signal Spectrum (FSS): The full diffusion signal S can be 

represented as the spherical convolution between the fiber orientation distribution function 

(fODF) and the kernel h. Using spherical harmonics (SHs), S can be expressed as the 

product of rotational SHs, H, the SH of even order up to order L, YL, and the SH 

coefficients of the fODF, φ. In line with [9] and the spirit of SMSI, let ℋ λ∥ i , λ⊥ i  be the 

matrix of rotational SHs of h(g|ω, λ∥[i], λ⊥[i]), and φi be the SH coefficients of the fODF 

corresponding to h(g|ω, λ∥[i], λ⊥[i]), the full signal can be discretized as [11]

S ≈ ∑
i

ℋ λ∥ i , λ⊥ i YLφi = ℬΦ . (5)

ℬ can be seen as a dictionary matrix and Φ, a matrix containing φi, ∀i, can be solved with 

Tikhonov regularization [9]

min
Φ

ℬ
γ3diag w′ Φ − S

0 2

2
. (6)

To ensure that the fODF of anisotropic atoms does not degenerate to become isotropic, we 

first solve (6) with weight vector w′ set to one for all atoms and reapply (6) with w′ set to a 
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higher value for any atom with GFA < 0.3. This approach penalizes low GFA anisotropic 

fODF and disambiguates anisotropic and isotropic diffusion in case of degeneracy [1]. From 

the final solution, a set of weights, νFSS, is calculated as the 0-th order SH coefficient from 

Φ.

Weighting with Spherical Mean Spectrum (SMS): Similar to [1], we first use the 

spherical mean signals of shells with b ≤ 1000 s/mm2 in solving (4) with w set to one for all 

atoms. This will help improve the estimates of the volume fractions of fast isotropic 

diffusion atoms as the associated signals decay rapidly and become trivial at higher b value. 

The solution to this step results in a set of weights, νSMS.

Iterative Estimation: We then solve for the volume fractions using all b-shells via 

iterative re-weighted elastic net, where in the j-th iteration we have

νj = arg min
νj ⪰ 0

A
γ2I νj − S

0 2

2
+ γ1 diag wj νj 1, (7)

where wj i = 1
ξ + νj − 1 i  with ξ being a constant and ν0 is computed as the element-wise 

geometric mean of νFSS and νSMS. Regularization parameters γs are determined via grid 

search as in [1].

2.3 Intra-soma Diffusion Properties

From ν, the volume fraction of the intra-soma compartment can be determined. Note that 

intra-soma diffusion can be characterized by multiple slow isotropic diffusion atoms with 

different diffusivity values and hence deviates from Gaussianity. To characterize diffusional 

non-Gaussianity, we derive a soma kurtosis model from [12]

ln Ssoma  b = − bλsoma  + b2

6 Ksoma λsoma
2 , (8)

where Ssoma is the normalized spherical mean signal contribution from the soma 

compartment, λsoma is the soma diffusivity, and Ksoma is the soma kurtosis.

3 Experiments

For evaluation, we used the dMRI data of 4 healthy adults, each with 12, 24, and 48 

diffusion-weighted images respectively for b = 1000, 2000, 3000 s/mm2 and 6 B0 images. 

Each diffusion-weighted image has an isotropic resolution of 1.5mm. The images were 

corrected for motion and off-resonance artifacts [13]. SMSI parameters were set according 

to [1].

3.1 Microstructure

Figure 2 presents the parametric maps for a representative subject. In white matter, the intra-

neurite volume fraction (vneu) is high, in line with previous observations that these regions 

contain mostly myelinated axons [2,4,14], giving a clear contrast for major fiber bundles 
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such as forceps major, forceps minor, cortical spinal tract. The extra-cellular volume fraction 

(vec) is higher in superficial white matter and some gray matter regions. The fast-isotropic 

diffusion volume fraction (vfi) is high in the ventricles and peripheral regions where there is 

little to no microscopic barriers to water diffusion.

The intra-soma volume fraction (vsoma) is higher in the cortical ribbon. The typical value is 

between 0.1–0.2, which are in line with observations in [7,15]. The soma diffusivity (λsoma) 

is mostly around 0.6 μm2/ms in the cortex and is slightly lower in the cerebellum. The soma 

kurtosis (Ksoma), although small, is non-zero and is highest in the cerebellar gray matter. 

This could be due to the unique structure of the cerebellar cortex with a dense layer of 

granule cells and Purkinje cells with complex dendritic spines [8].

3.2 Histology

Figure 3 illustrates the similarity between our results and ex-vivo histological images. The 

intra-neurite volume fraction map is strikingly similar to myelin stain. The intra-soma 

volume fraction map is similar to cell nuclei stain, with higher values in the cerebral and 

cerebellar gray matter. These results demonstrate that our method provides biologically 

meaningful contrasts resembling ex-vivo stains. This also underscores the importance of 

dMRI as an in vivo histology tool that can avoid the limitations of ex-vivo staining, such as 

distortions caused by the slicing and staining processes.

3.3 Cortical Patterns

We constructed the cortical surfaces from the T1- and T2-weighted images as described in 

[16,17] and mapped the parametric maps onto the cortical surface as described in [18]. 

Figure 4 shows the average maps of 4 healthy adults. The intra-neurite volume fraction is 

higher in the motor and somatosensory areas, confirming the pattern observed in [19]. On 

the other hand, the soma maps reveal distinct patterns, with relatively low values in the 

motor area, but higher values in the occipital and temporal lobes.

3.4 Number of Shells

To evaluate the effect of the number of b-shells on microstructure estimation using our 

model, we acquired a 21-shell data of a healthy adult with b-values ranging from 500 s/mm2 

to 3000 s/mm2 with step size 125 s/mm2. There are 4 to 24 diffusion-weighted (DW) images 

in each shell, and 13 non-DW images, resulting in a total of 307 volumes. We fitted our 

model to 4 different sampling schemes:

1. The 21-shell dataset consisting of all volumes;

2. The 11-shell dataset with b-values from 500 s/mm2 to 3000 s/mm2 with step size 

250 s/mm2;

3. The 6-shell dataset with b-values from 500 s/mm2 to 3000 s/mm2 with step size 

500 s/mm2;

4. The 3-shell-1000 with b-values from 1000 s/mm2 to 3000 s/mm2 with step size 

1000 s/mm2; and
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5. The 3-shell-500 dataset with b-values from 500 s/mm2 to 2500 s/mm2 with step 

size 1000 s/mm2.

In Fig. 5, indices from different schemes were compared with those from the reference (21-

shell). The higher number of shells, the closer the results to the reference. However, even at 

only 3 b-shells, almost all indices are comparable to the reference with correlation 

coefficient (R) greater than 0.95. The only exception is vfi from the 3-shell-1000 scheme, 

showing slightly lower R due to the lack of a lower b-shell for effective estimation of the fast 

isotropic diffusion compartment. Nevertheless, the correlation coefficient R > 0.89 is still 

sufficiently high for most practical situations. The results demonstrate that our method is 

suitable for datasets with at least 3 b-shell, such as the Human Connectome Project (HCP) 

[20] and the Baby Connectome Project (BCP) [21].

4 Conclusions

We have presented a method to characterize soma diffusion properties and have shown that 

biologically meaningful contrasts resembling histological data can be produced. Future work 

entails applying our method to investigating changes in the cerebral cortex in relation to 

development, aging, and diseases.
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Fig. 1. Model.
The spherical mean signal is contributed by the intra-neurite (neu), extra-cellular (ec), intra-

soma (soma), and fast-isotropic (fi) diffusion compartments. SMSI represents each 

compartment with atoms of multiple diffusivity values.
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Fig. 2. Tissue Microstructure.
Microstructural properties of a representative subject: Intra-neurite volume fraction (vneu), 

intra-soma volume fraction (vsoma), extra-cellular volume fraction (vec), fast-isotropic 

diffusion volume fraction (vfi), soma diffusivity (λsoma), and soma kurtosis (Ksoma).
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Fig. 3. Resemblance to Stained Sections.
Intra-neurite volume fraction (vneu), which provides contrast related to neurite density, poses 

striking similarity with myelin stain. Intra-soma volume fraction (vsoma), which provides 

information related to soma density, shows remarkable resemblance with cell stain. Stained 

sections were obtained from https://msu.edu/~brains/brains/human/index.html.
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Fig. 4. Cortical Patterns.
Average cortical maps of intra-neurite volume fraction (vneu), intra-soma volume fraction 

(vsoma), soma diffusivity (λsoma), and soma kurtosis (Ksoma) of 4 healthy adults.
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Fig. 5. Number of b-Shells.
Scatter plots and histograms of representative indices given by sampling schemes 11-shell, 

6-shell, 3-shell-1000, and 3-shell-500 with 21-shell as the reference. Voxels are classified as 

CSF (red), gray matter (blue), or white matter (yellow). For better visibility, only one in 

every six voxels is shown. Since intra-soma volume fraction is negligible in white matter and 

CSF, only gray matter voxels are shown in (d).
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