Skip to main content

Rethinking PET Image Reconstruction: Ultra-Low-Dose, Sinogram and Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Although Positron emission tomography (PET) has a wide range of clinical applications, radiation exposure to patients in PET continues to draw concerns. To reduce the radiation risk, efforts have been made to obtain high resolution images from low-resolution images. However, previous studies mainly focused on denoising PET images in image space, which ignored the influence of sinogram quality and constraints in reconstruction process. This paper proposed a directly reconstruction framework from ultra-low-dose sinogram based on deep learning. Two coupled networks are introduced to sequentially denoise low-dose sinogram and reconstruct the activity map. Evaluation on in vivo PET dataset indicates that the proposed method can achieve better performance than other state-of-the-art methods and reconstruct satisfactory PET images with only 0.2% dose of standard one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, Y., et al.: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping- based sparse representation. Phys. Med. Biol. 61(2), 791 (2016)

    Article  Google Scholar 

  2. Wang, Y., et al.: Semi-supervised tripled dictionary learning for standard-dose PET image prediction using low-dose PET and multimodal MRI. IEEE Trans. Biomed. Eng. 64(3), 569–579 (2017)

    Article  Google Scholar 

  3. Cui, Jianan, et al.: CT-guided PET parametric image reconstruction using deep neural network without prior training data. In: Medical Imaging 2019: Physics of Medical Imaging. International Society for Optics and Photonics, vol. 10948, p. 109480Z (2019)

    Google Scholar 

  4. Chen, K.T., et al.: Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology 290(3), 649–656 (2019)

    Article  Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Xu, J., Liu, H.: Three-dimensional convolutional neural networks for simultaneous dual-tracer PET imaging. Phys. Med. Biol. 64(18), 185016 (2019)

    Article  Google Scholar 

  7. Xu, J., Gong, E., Pauly, J., Zaharchuk, G.: 200x low-dose PET reconstruction using deep learning. ArXiv abs/1712.04119. (2017)

    Google Scholar 

  8. Jianan, C., et al.: PET image denoising using unsupervised deep learning. Phys. Med. Biol. 46(13), 2780–2789 (2019)

    Google Scholar 

  9. Zeng, G.L.: Image noise covariance can be adjusted by a noise weighted filtered backprojection algorithm. IEEE Trans. Radiat. Plasma Med. Sci. 3(6), 668–674 (2019). https://doi.org/10.1109/TRPMS.2019.2900244

    Article  Google Scholar 

  10. Samsonov, A., Johnson, C.R.: Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels. Magn. Reson. Med. 52(4), 798–806 (2004)

    Article  Google Scholar 

  11. Ghani, M.U., Karl, W.C.: CNN based sinogram denoising for low-dose CT. In: Mathematics in Imaging. Optical Society of America, pp. MM2D-5 (2018)

    Google Scholar 

  12. Whiteley, W., Gregor, J.: CNN-based PET sinogram repair to mitigate defective block detectors. Phys. Med. Biol. 64(23), 235017 (2019)

    Article  Google Scholar 

  13. Häggström, I., Schmidtlein, C.R., Campanella, G., Fuchs, T.J.: DeepPET: a deep encoder–decoder network for directly solving the PET image reconstruction inverse problem. Med. Image Anal. 54, 253–262 (2019)

    Article  Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings - 30th IEEE Conference Computer Vision Pattern Recognition, CVPR 2017, January 2017, pp. 5967–5976 (2017)

    Google Scholar 

  15. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Liu, Z., Chen, H., Liu, H.: Deep learning based framework for direct reconstruction of PET images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 48–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_6

    Chapter  Google Scholar 

  18. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing System, pp. 1196–1205, December 2017

    Google Scholar 

  19. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine learning, pp. 129–136 (2007)

    Google Scholar 

  20. Jolicoeur-Martineau,A.: The relativistic discriminator: a key element missing from standard GAN. In: 7th International Conference Learn Represent ICLR 2019, (2019)

    Google Scholar 

  21. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777, (2017)

    Google Scholar 

  22. Brooks, R.A., Di Chiro, G.: Statistical limitations in X-ray reconstructive tomography. Med. Phys. 3(4), 237–240 (1976)

    Article  Google Scholar 

  23. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  24. Cabello, J., Torres-Espallardo, I., Gillam, J.E., Rafecas, M.: PET reconstruction from truncated projections using total-variation regularization for hadron therapy monitoring. IEEE Trans. Nucl. Sci. 60(5), 3364–3372 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No: 61525106, 61427807, U1809204), by the National Key Technology Research and Development Program of China (No: 2017YFE0104000,2016YFC1300302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, Q., Liu, H. (2020). Rethinking PET Image Reconstruction: Ultra-Low-Dose, Sinogram and Deep Learning. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics