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Abstract. This paper examines the problem of finding shortest paths
in graphs that feature additional penalties – transfer costs – at their
vertices. We propose a shortest path algorithm that can cope with these
additional penalties without the need of first performing a graph expan-
sion, which is the typical algorithmic strategy. While our method exhibits
an inferior growth rate compared to existing approaches, we show that
it is more efficient on sparse graphs.

1 Introduction

Consider the graph in Figure 1. This might depict some small public transport
system with edge colours representing transport lines and weights representing
travel times. Now suppose that we want to find the shortest path from vertex v1
to v9. By inspection, this is (v1, v4, v5, v9) with a cost of 2 + 1 + 2 = 5. However,
this path involves changing lines at v4 which, in reality, might also incur some
time penalty. If this penalty is more than three units, then the shortest path
from v1 to v9 now becomes (v1, v4, v7, v8, v9) with a cost of eight.

In this paper we propose a flexible model in which colours of edges are used
to help specify transfer costs at vertices. Let G = (V,E) be an edge-weighted,
loop-free, directed multigraph using k different edge colours. As usual, V is a
set of n vertices {v1, . . . , vn} and E is a set of m coloured, directed edges taken
from the set of all such edges {(u, v, i) : u, v ∈ V ∧u 6= v∧ i ∈ {1, . . . , k}}. Hence
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Fig. 1. A small network comprising n = 9 vertices, m = 16 edges and k = 3 colours.
As per Definition 1 we have, for example, E−(v1) = {(v2, v1, 1), (v2, v1, 2)}, E+(v1) =
{(v1, v2, 2), (v1, v4, 1)}, C−(v1) = {1, 2} and C+(v1) = {1, 2}.



0 ≤ m ≤ kn(n − 1). The weight of an edge of colour i travelling from vertex u
to vertex v is denoted by w(u, v, i).

In this paper we also use the following notation, exemplified in Figure 1:

Definition 1. Let E−(v) = {(u, v, i) : (u, v, i) ∈ E} be the set of edges whose
endpoint is vertex v, and C−(v) = {i : ∃(u, v, i) ∈ E−(v)} be the set of distinct
colours that enter v. Similarly, E+(v) = {(v, u, i) : (v, u, i) ∈ E} is the set of
edges whose starting point is v and C+(v) is the set of colours that leave v.

Finally, we also need to define a set of transfers T . A transfer occurs when
we arrive at a vertex v on an edge of colour i and leave v on an edge of colour
j. Hence T = {(v, i, j) : v ∈ V ∧ i ∈ C−(v) ∧ j ∈ C+(v)}. The cost of a transfer
is denoted by t(v, i, j) and it is assumed that if i = j, then t(v, i, j) = 0.

Shortest path problems on graphs with transfer costs at the vertices have
many practical uses. As noted, an obvious example is with public transport
networks where additional costs (such as financial or time) can be incurred
when switching between different lines. Another example is with the multi-modal
shortest path problem where we are in interested in transporting goods efficiently
between two locations using a combination of different travel modes (sea, train,
road etc.), and where transfer costs represent the cost of moving the goods from
one mode to another [5]. Constraints stemming from real-world road networks
can also be defined using the above model by considering edges as roads and
vertices as intersections. For example:

Intersection delays. Often vehicles will need to wait at an intersection due
to crossing traffic and pedestrians. Such delays can be modelled using an
appropriate transfer cost at the vertex.

Illegal routes and turns. On occasion, large vehicles will not be permitted
to drive on particular roads or make particular turns at an intersection.
In these cases we can simply change the corresponding edge weights and
transfer costs to infinity.

Kerbside routing. Vehicles will often need to arrive at a location from a par-
ticular direction (e.g. if a road contains a central reservation and crossing is
not permitted). In this case, the shortest path problem will be constrained
so that we arrive at the destination vertex on a particular subset of edge
colours. Note that this can result in shortest paths that contain cycles. For
example, in Figure 1 the shortest v1-v4-path that also arrives on a red edge
is (v1, v4, v5, v4).

Initial headway. Similarly to the previous point, vehicles may also need to
leave a location in a particular direction (e.g. if they previously approached
from a particular direction and turning is not possible). In this case, the
shortest path should be specified as having to leave this vertex on a particular
edge colour.

In this paper we propose a shortest path algorithm that accommodates trans-
fer costs at the vertices and also allows us to evaluate paths in which the edge
colours entering the source and target vertices are specified by the user. As we



will see, previous methods for this problem rely on expanding graphs, resulting
in many more edges and vertices. In contrast, our algorithm avoids this and,
instead, operates on the original graphs without modification. The next section
of this paper reviews the shortest path problem and surveys relevant expansion
methods. Section 3 then presents our algorithm and proves its correctness, while
Sections 4 and 5 examine and compare asymptotic and empirical run times.
Section 7 concludes the paper.

2 Identifying Shortest Paths

In general, three problems involving shortest paths on edge-weighted graphs can
be distinguished: (a) the “single-source single-target” problem, which involves
finding the shortest path between two vertices; (b) the “single source” problem,
which involves determining the shortest path from a source vertex to all other
vertices in the graph (thereby producing a shortest path tree); and (c) the “all
pairs” problem, where shortest paths are identified between all pairs of vertices.
A well-known algorithm for solving problems (a) and (b) is the Bellman-Ford
algorithm, which operates inO(nm) time [4]. This is suitable for graphs featuring
both positive and negative edge weights and can also be used for detecting
negative cycles.

If a graph contains only nonnegative edge weights, then a more efficient alter-
native is to use Dijkstra’s algorithm [4]. The pseudocode of this method is given
in Figure 2. As shown, Dijkstra uses four data structures, D, L, P and Q. The
first three of these contain n elements and will typically allow direct access (e.g.
by using arrays). Each entry D(v) is used to mark whether a vertex v is classed
as “distinguished” or not. Initially, only the source vertex s is distinguished.
During the run, further vertices then become distinguished one by one, and this

Dijkstra (s ∈ V )
(1) for all v ∈ V do
(2) L(v)←∞, D(v)← false, P (v)← null
(3) L(s)← 0
(4) Q← {(s, L(s))}
(5) while Q 6= ∅ do
(6) Let (u, L(u)) be the element in Q with minimum value for L(u)
(7) Q← Q− {(u, L(u))}
(8) D(u)← true
(9) for all (u, v) ∈ E+(u) : D(v) = false do
(10) if L(u) + w(u, v) < L(v) then
(11) if L(v) 6=∞ then Q← Q− {(v, L(v))}
(12) L(v)← L(u) + w(u, v)
(13) Q← Q ∪ {(v, L(v))}
(14) P (v)← u

Fig. 2. Dijkstra’s algorithm for producing a shortest-path tree from a source vertex
s ∈ V . To solve the single-source single-target problem, Line (5) should be replaced by
the statement “while D(t) 6= true do”, where t ∈ V is the target vertex.



continues until all vertices are marked as such. Meanwhile, L is used to hold a
“label” for each vertex. During execution, L(v) stores the length of the shortest
s-v-path that uses distinguished vertices only; hence at the end of the run, L(v)
will store the length of the shortest s-v-path in the graph. P then allows us to
identify the shortest paths themselves by storing the predecessor of each vertex
v in the shortest path tree.

The final structure used in Dijkstra is a priority queue Q. During execu-
tion this holds the label values of all vertices that have been considered by the
algorithm but that have not yet been marked as distinguished. As shown on
Line (6), in each iteration Q is used to identify the undistinguished vertex u
with the minimal label value. In the remaining instructions, u is then removed
from Q and marked as distinguished, and adjustments are made to the labels of
undistinguished neighbours of u, if applicable.

The asymptotic running time of Dijkstra depends mainly on the data struc-
ture used to represent Q. A good option is to use a binary heap or self-balancing
binary tree since this allows identification of the minimum label in constant
time, with look-ups, deletions, and insertions then being performed in logarith-
mic time. This leads to an overall run time of O((n + m) lg n), which simplifies
to O(m lg n) for connected graphs (where m ≥ n). Asymptotically, a further
improvement to O(m + n lg n) can also be achieved using a Fibonacci heap for
Q, though such structures are often viewed as slow in practice due to their large
memory consumption and the high constant factors contained in their opera-
tions [2].

Solving the all pairs shortest path problem involves populating a matrix
Dn×n, where each element Dij holds the length of the shortest vi-vj-path. A
well known approach for this problem is the Floyd-Warshall algorithm, which
operates in O(n3) time [4]. Another alternative – which usually gives better per-
formance with sparse graphs – is to simply perform n applications of Dijkstra,
with each application populating a single row of D.

Although the Bellman-Ford, Floyd-Warshall, and Dijkstra algorithms all cor-
rectly calculate shortest paths in edge-weighted graphs, note that they cannot
be directly applied to graphs featuring transfer penalties at the vertices. Instead,
graphs are typically expanded to allow transfer penalties to be expressed via ad-
ditional “transfer edges”. This then allows shortest path methods to be applied
as before. The most prominent expansion method is that of Kirby and Potts [10]
who suggest using a cluster of dummy vertices for each vertex in the original
graph. Specifically, using a graph G = (V,E) as defined in Section 1, a new
larger graph G′ = (V ′, E′) is formed by creating two sets of dummy vertices for
each vertex v ∈ V : one for each incoming colour in v and one for each outgoing
colour in v. Transfer edges are then added between the dummy vertices in each
set using edge weights equivalent to the corresponding transfer costs.

An example of the Kirby-Potts expansion method is shown in Figure 3(a).
As illustrated, the transfer edges within each cluster define a directed bipartite



graph. This results in a new graph G′ = (V ′, E′) comprising

n′ =

n∑
i=1

|C−(vi)|+ |C+(vi)| (1)

m′ = m +

n∑
i=1

|C−(vi)| · |C+(vi)| (2)

vertices and edges respectively. Note that a shortest path between two vertices
in G′ now also specifies the starting colour and arrival colour in the original
graph’s path. For example, the shortest path between the vertices marked by X
and Y in Figure 3(a) corresponds to the shortest v1-v5-path in Figure 1 in which
“arrival” at v1 is assumed on a black edge and arrival at v5 is on a red edge.

A similar but more restricted version of the Kirby-Potts expansion has also
been used in various studies regarding small bus networks [1,3,8,7,9]. In this
method each vertex v of the original graph is represented by a cluster of |C−(v)∪
C+(v)| dummy vertices. Each vertex in this cluster then corresponds to a differ-
ent colour, and edges are added between these vertices using weights equivalent
to the corresponding transfer costs. However, although this restricted method
can result in smaller graphs than those of Kirby-Potts, we have found that it
can produce illogical results when the edge weights within a cluster do not obey
the triangle inequality. Consider the Kirby-Potts expansion in Figure 3(b) for
example, where a cost of 3 is incurred at the vertex when transferring from blue
to black. In the corresponding graph produced using the restricted expansion
method (3(c)) a smaller transfer cost of 2 will be identified by transferring from
blue to red to black, which is clearly inappropriate when modelling things such
as transfers on public transport. (This issue is not noted in any of the above
works; however, it is actually avoided due to a constant value being used for all
transfers, thereby satisfying the triangle inequality at each vertex.)

One further method of graph expansion is due to Winter [12] who suggests
using the line graph of G (referred to as the “pseudo-dual” in the paper) for
identifying shortest paths. However, this leads to a much larger graph comprising
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Fig. 3. (a) The graph G′ = (V ′, E′) formed from Figure 1 using the Kirby-Potts
expansion method; (b) an example cluster of dummy vertices produced using the Kirby-
Potts method; and (c) the corresponding cluster using the restricted expansion method.



m vertices and
∑

v∈V |E−(v)| · |E+(v)| edges. A copy of the original graph G is
also required with this method to facilitate the drawing of routes.

3 An Extension to Dijkstra’s Algorithm

In this section we propose an extension to Dijkstra’s algorithm that computes
shortest paths in graphs featuring transfer costs at the vertices, but without the
need for first performing an expansion.

The idea behind our proposed method can be explained by considering a
cluster of dummy vertices in a Kirby-Potts expanded graph. As illustrated in
Figures 3(a) and (b), we see that vertices in each cluster can be partitioned
into two sets: in-vertices and out-vertices. Moreover, a shortest path from an
in-vertex must always next pass through an out-vertex from the same cluster
before moving to a different cluster. As proven in Theorem 1 below, it is therefore
sufficient to simply add the cost of the corresponding transfer (edge) to the path
here, rather than consider the out-vertices as separate entities within the graph.

The idea in our approach is to therefore use a pair (u, i) for each vertex
u ∈ V and incoming colour i ∈ C−(u), giving

∑
u∈V |C−(u)| pairs in total.

The source is also defined by such a pair (s, l), which is interpreted as meaning
that the paths should start at s ∈ V , assuming initial entry to s on an edge of
colour l. Similarly to Dijkstra, during execution this algorithm stores labels,
predecessors and the distinguished status of each pair using the structures L,
P and D respectively. At termination, all pairs reachable from the source are
marked as distinguished, and a label L(u, i) holds the length of the shortest path
from the source to vertex u, assuming entry at u on an edge of colour i.

The pseudocode of our algorithm is shown in Figure 4 and an example so-
lution from this method is shown in Figure 5. As shown, the main differences
between this approach and Dijkstra are (a) the use of vertex-colour pairs, and
(b) at Lines 11 and 13, where transfer costs t(u, i, j) are added when comparing
and recalculating label values. Note also that for k = 1 this algorithm becomes
equivalent to Dijkstra, justifying our choice of the name Extended-Dijkstra
here.

The correctness of Extended-Dijkstra is due to the following.

Theorem 1. If all edge weights and transfer costs in a graph are nonnegative
then, for all distinguished pairs (u, i), the label L(u, i) is the length of the shortest
path from the source (s, l) to (u, i).

Proof. Proof is by induction on the number of distinguished pairs. When there
is just one distinguished pair, the theorem clearly holds since the length of the
shortest path from (s, l) to itself is L(s, l) = 0.

For the step case, let (v, j) be the next pair to be marked as distinguished by
the algorithm (i.e., L(v, j) is minimal among all undistinguished pairs) and let
(u, i) be its predecessor. Hence the shortest (s, l)-(v, j)-path has length L(u, i) +
t(u, i, j) + w(u, v, j). Now consider any other path P from (s, l) to (v, j). We
need to show that the length of P cannot be less than L(u, i) + t(u, i, j) +



w(u, v, j). Let (x, a) and (y, b) be pairs on P such that (x, a) is distinguished
and (y, b) is not, meaning that P contains the edge (x, y, b). This implies that
the length of P is greater than or equal to L(x, a) + t(x, a, b) +w(x, y, b) (due to
the induction hypothesis). Similarly, this figure must be greater than or equal
to L(u, i) + t(u, i, j) + w(u, v, j) because, as assumed, L(v, j) is minimal among
all undistinguished pairs.

4 Asymptotic Analysis

In this section we consider the asymptotic complexity of Extended-Dijkstra
and compare it to the process of using Dijkstra on graphs that have already
been expanded using the Kirby-Potts method. As we might expect, the expense
of both of these approaches increases for larger numbers of vertices and edges.
In addition, they are also affected by the number of colours k used in the graph,
though we avoid this variable in our analysis because it can lead to an overes-

Extended-Dijkstra (s ∈ V, l ∈ C−(s))
(1) for all v ∈ V do
(2) for all i ∈ C−(v) do
(3) L(v, i)←∞, D(v, i)← false, P (v, i)← null
(4) L(s, l)← 0
(5) Q← {(s, l, L(s, l))}
(6) while Q 6= ∅ do
(7) Let (u, i, L(u, i)) be the element in Q with minimum value for L(u, i)
(8) Q← Q− {(u, i, L(u, i))}
(9) D(u, i)← true
(10) for all (u, v, j) ∈ E+(u) : D(v, j) = false
(11) if L(u, i) + t(u, i, j) + w(u, v, j) < L(v, j) then
(12) if L(v, j) 6=∞ then Q← Q− {(v, j, L(v, j))}
(13) L(v, j)← L(u, i) + t(u, i, j) + w(u, v, j)
(14) Q← Q ∪ {(v, j, L(v, j))}
(15) P (v, j)← (u, i)

Fig. 4. The Extended Dijkstra algorithm.
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Fig. 6. (a) A graph G∗ using k = 3 colours; (b) the underlying conflicts graph (and
3-colouring) prescribed by G∗; (c) a 2-colouring of this conflicts graph; and (d) the
original graph G∗ using k = 2 colours.

timation of complexity due to a relationship with the graph colouring problem,
as we now explain.

Let G = (V,E) be a graph using k colours as defined in Section 1, and let
G∗ = (V,E∗) be a copy of G with all edge directions removed. Finally let G∗(i)
denote the subgraph formed from G∗ using edges of colour i only. Note that if
two such subgraphs G∗(i) and G∗(j) have no common vertices, then no transfers
are possible between colours i and j. In this case we have the opportunity to
relabel all i-coloured edges with colour j (or vice versa), and potentially reduce
the number of colours being used in the graph.

In more detail, consider a conflicts graph created using an i-coloured ver-
tex for each component of each subgraph G∗(i) (for i ∈ {1, . . . , k}), with edges
corresponding to any vertex pair representing differently-coloured overlapping
components in G∗. Note that the colours of the vertices in this conflicts graph
define a proper k-colouring, in that pairs of adjacent vertices always have differ-
ent colours; however, it may be possible to colour this conflicts graph using fewer
colours. If this is so, then an equivalent graph to G with fewer colours can also be
created. An example of this process is shown in Figure 6. This illustrates that,
while the number of edge colours k could have any value up to and including
m, the minimum number of colours needed to express this graph might well be
smaller. However, identifying this minimum can be difficult since it is equivalent
to solving the NP-hard chromatic number (graph colouring) problem [11].

Given these observations on k, a better alternative for analysing complex-
ity is to consider the number of colours entering and exiting each vertex (given by
C−(v) and C+(v)) and, in particular, their maximum values c−max = max{|C−(v)| :
v ∈ V } and c+max = max{|C+(v)| : v ∈ V }.

Now reconsider the pseudocode for Extended-Dijkstra given in Figure 4.
As before, we assume the use of a binary heap for Q and direct access data
structures for L, D and P . The initialisation of L, D, and P in Lines 1 to 5
has a worst-case complexity of O(nc−max). For the main part of the algorithm,
now note that each label in L is considered and marked as distinguished exactly
once and, in the worst case, we will have nc−max such labels. Once a label (u, i) is
marked as distinguished, all incident edges (u, v, j) are then considered in turn
and are subject to a series of constant-time and log-time operations, as shown
in Lines 12 to 15. This leads to a overall worst case complexity of O (nc−max) +
O ((mc−max) lg (nc−max)). Assuming graph connectivity, this simplifies to a growth
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Fig. 7. Comparison of growth rates f1 and f2 with regards to the number of edges m.
Rows show n-values of 1000 and 10000 respectively; columns consider values c−max =
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rate for Extended-Dijkstra of

f1 = O
((
mc−max

)
lg
(
nc−max

))
. (3)

As noted, the complexity of Dijkstra using a binary heap is O(m lg n).
Using a Kirby-Potts expansion, in the worst case this leads to a graph G′ with
n′ = n(c−max + c+max) vertices and m′ = m + nc−maxc

+
max edges, giving an overall

complexity of O(m′ lg n′), or

f2 = O
((
m + nc−maxc

+
max

)
lg
(
n
(
c−max + c+max

)))
. (4)

Figure 7 compares f1 and f2 for a range of different parameter values.
Note that f1 grows more quickly in all cases, demonstrating that Extended-
Dijkstra is less efficient with regards to increases in the number of edges m.
The main reason for this is that, with Extended-Dijkstra, each outgoing edge
of a vertex v is considered for each incoming colour of v. This results in the term
(mc−max) seen in Equation (3). In contrast, although a Kirby-Potts expansion
results in a graph G′ with an increased number of edges and vertices, each edge
in G′ is considered only once using Dijkstra, which results in a slower growth
rate overall. Note, however, that each chart in Figure 7 features an intercept,
suggesting that Extended-Dijkstra is more efficient with very sparse graphs.
For indicative purposes, the grey rectangles in the figure show the range of values
for which planar digraphs exist (i.e., the right boundary of these rectangles occur
at m = 2(3n − 6), which is the maximum possible number of directed edges in
a planar digraph). Planar graphs are considered further in the next section.



5 Computational Comparison

We now consider the CPU times required to calculate shortest path trees on
the edge-coloured graphs defined in Section 1. In our case we will seek shortest
paths in which transfer costs are not incurred at terminal vertices. This is useful
in applications such as public transport, where a passenger will arrive at the
source vertex by means outside of the network (e.g. by foot), and will then
leave the network on arrival at their destination. To make this modification with
Extended-Dijkstra we can simply set all transfer costs at the source vertex s
to zero before running the algorithm using an arbitrary in-colour l ∈ C−(s). The
shortest s-v-path length in G is then indicated by the minimum value among the
labels L(v, i), where i ∈ C+(v). For a Kirby-Potts expanded graph G′, a similar
process is used: first, the weights of all transfer edges in the cluster defined by
s are temporarily set to zero; next Dijkstra is executed from an arbitrary in-
vertex within this cluster; finally, the minimum label value among all in-vertices
in v’s cluster is identified.

Two types of problem instances were considered in our tests. These were
generated using a density parameter d that represents the average number of
edges travelling from each vertex u to each vertex v. The first instance type,
random graphs, were generated by randomly placing n vertices into the unit
square. All potential edges (u, v, i) were then considered in turn and added to
the graph with a fixed probability of d/k. During this process, care was also
taken to ensure that the graph contained a random (n − 1)-cycle, making the
graph strongly connected.

The second graph type, planar graphs, were considered to give an indication
of algorithm performance on transport networks. Recall that planar graphs are
those that can be drawn on a plane so that no edges cross. In that sense, like
road networks, they are quite sparse, with vertex degrees being fairly low. Note
that when things like roads physically intersect on land, there will often be an
opportunity to transfer from one to the other; hence, the underlying graph will
be planar. However, this is not always the case, such as when one road crosses
another via a bridge, so the analogy is not exact. Planar graphs were formed by
again randomly placing n vertices into the unit square. A Delaunay triangulation
was then generated from these vertices, with the edges of this triangulation being
used to form a pool of potential edges for the graph (that is, for each edge {u, v}
in the triangulation, all directed and coloured edges (u, v, i) and (v, u, i) (for
i ∈ {1, . . . , k}) were added to the pool). Edges were then selected randomly from
this pool and added to the graph until the desired graph density was reached.
Again, we also ensured that the resultant graph was strongly connected: in this
case by including all edges from a bidirectional minimum spanning tree.

For both random and planar graphs, edge weights were calculated using
the Euclidean distances between vertices plus or minus x percent where, for
each edge, x was selected randomly in the range (−10, 10). This prevents edges
between the same pair of vertices from having the same weight. Transfer costs
were set to the average edge weight across the graph plus or minus x percent.
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Fig. 8. CPU times required to produce a shortest path tree from a single source using
random graphs of differing densities. Rows show n values of 1000 and 10000 respec-
tively; columns consider k-values of 3, 10 and 20 respectively. The number of edges in
a graph is determined by multiplying the density by n(n− 1).

All algorithms used in our tests were written in C++ and executed on 3.2
GHtz Windows 7 machines with 8 GB RAM. Our implementations used red-
black trees for the priority queues Q and adjacency lists for storing edges, colours
and weights.

Figure 8 shows the average CPU times required by Extended-Dijkstra
for random graphs with n ∈ {1000, 10000} and k ∈ {3, 10, 20}. In all cases, five
graphs were generated for each density d ∈ {0, 0.02, 0.04, . . . , 1.0}. Extended-
Dijkstra was then run using each of the n vertices as a source in turn. Each
point in the figure is therefore a mean of 5n different values. The figures also show
the times required by Dijkstra on the corresponding Kirby-Potts expanded
graphs. Note that the cost of performing the expansions is not included in these
figures.

As expected, Figure 8 shows that the run times of both algorithms grow
for increases in n, k, and m. We also see that the Kirby-Potts method shows
more favourable run times overall, particularly for large dense problem instances.
Indeed, the most extreme difference occurs with graphs with n = 10000, d = 1,
and k = 20, where an average difference of over twenty seconds per run is
observed.

To contrast these results, Figure 9 shows the average CPU times required
for planar graphs. Here, for each n and k, graphs were generated for 25 different
values for m, using an upper limit of m = 2k(3n − 6) (this is the maximum
number of edges in a planar, loop-free, multi-digraph using k edge colours).
As before, the right boundaries of the grey rectangles in these charts indicate
m = 2(3n − 6) (the maximum number of edges in a planar digraph). All other
details are the same as the previous experiments.
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Fig. 9. CPU times required to produce a shortest path tree from a single source using
planar graphs of differing densities. Rows show n values of 1000 and 10000 respectively;
columns consider k-values of 3, 10 and 20 respectively.

Figure 9 reveals similar patterns to our analysis in Section 4. For sparse
graphs, including all of those within the grey rectangles, Extended-Dijkstra
requires less run time. However, as previously seen in Figure 7, these two lines
eventually intersect, with Extended-Dijkstra then requiring more run time
for denser graphs.

6 Expansion Times

In the results of the previous section we have chosen not to include the time
taken to perform Kirby-Watts expansions. This is because the decision on how a
graph is represented and stored will often be made by the user beforehand and
might therefore be considered a separate process. However, this will not always
be the case. For example, Ahmed et al. [1] and Heyken Soares et al. [7] have
proposed methods for optimising public transport systems that use heuristics to
produce a whole series of graphs, each that is then expanded before evaluation.
In these cases, it is therefore appropriate to consider the overheads consumed
by these expansions.

In our case, an expansion takes a graph G and produces a corresponding
adjacency list for the expanded graph G′. This involves stepping through each
edge and each transfer cost in G and then adding an appropriate edge to G′,
leading to an overall complexity of O(m + nc−maxc

+
max). Note that this has a

slightly lower growth rate compared to executing Dijkstra on G′, shown in
Equation (4).

Table 1 shows the conversion times for random and planar graphs of differing
parameters. We see that these times increase for graphs featuring more edges,
vertices, and colours, as we would expect. For graphs with n = 1000, conversion



Random Graphs Planar Graphs
Conversion Time Conversion Time

Parameters Mean Std. dev. Parameters Mean Std. dev.
n = 1000: n = 1000:
d = 0.05, k = 3 0.006 < 0.001 m = 1998, k = 3 < 0.001 0.001
d = 0.50, k = 3 0.058 0.002 m = 9661, k = 3 0.003 0.001
d = 0.95, k = 3 0.113 0.001 m = 17325, k = 3 0.003 < 0.001
d = 0.05, k = 10 0.017 < 0.001 m = 1998, k = 10 0.001 < 0.001
d = 0.50, k = 10 0.063 0.001 m = 29781, k = 10 0.016 0.002
d = 0.95, k = 10 0.113 0.001 m = 57564, k = 10 0.017 0.001
d = 0.05, k = 20 0.055 0.001 m = 1998, k = 20 0.001 0.001
d = 0.50, k = 20 0.108 0.002 m = 58523, k = 20 0.059 0.002
d = 0.95, k = 20 0.162 0.016 m = 115049, k = 20 0.068 0.004
n = 10000: n = 10000:
d = 0.05, k = 3 0.602 0.006 m = 19998, k = 3 0.008 < 0.001
d = 0.50, k = 3 6.640 0.161 m = 96781, k = 3 0.028 0.001
d = 0.95, k = 3 38.369 6.452 m = 173565, k = 3 0.034 0.001
d = 0.05, k = 10 0.714 0.004 m = 19998, k = 10 0.009 0.001
d = 0.50, k = 10 6.550 0.229 m = 298341, k = 10 0.203 0.006
d = 0.95, k = 10 44.437 8.754 m = 576684, k = 10 0.232 0.008
d = 0.05, k = 20 1.193 0.014 m = 19998, k = 20 0.010 0.001
d = 0.50, k = 20 6.768 0.092 m = 586283, k = 20 0.689 0.002
d = 0.95, k = 20 53.360 7.904 m = 1152569, k = 20 0.770 0.016

Table 1. Number of seconds to perform a Kirby-Potts expansion for random and
planar graphs of differing parameters. Figures show the mean and standard deviation
across twenty problem instances.

times are very small, coming in at less than 0.2 seconds in all cases; however, for
larger graphs much longer times are sometimes required. Note that the largest
Kirby-Watts graphs seen here (produced from random graphs with n = 10000,
d = 0.95 and k = 20) required over 5 GB of RAM, so significant amounts
of memory management (such as paging) may also be needed as part of this
expansion process.

7 Conclusions

In this paper we proposed a new shortest path algorithm that copes with vertex
transfer costs without having to first perform a graph expansion, a process that
can sometimes be quite costly with large graphs. While our method exhibits
an inferior growth rate compared to using Dijkstra’s algorithm on Kirby-Potts
expanded graphs, we have seen that it can exhibit shorter run times with sparse
problem instances such as planar graphs.

In the future it would be useful to see if Extended-Dijkstra might also be
converted into a modified version of the A* algorithm, perhaps giving superior
performance with the single-source single-target shortest path problem. This
would involve modifying Line 7 of Figure 4 so that a heuristic rule is used for
selecting the pair (u, i). Properties of suitable heuristics are outlined in the work
of Hart et al. [6].
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