
Bet and Run for Test Case Generation

Sebastian Müller, Thomas Vogel, and Lars Grunske

Software Engineering Group, Humboldt-Universität zu Berlin, Berlin, Germany
{muelerse, thomas.vogel, grunske}@informatik.hu-berlin.de

Abstract. Anyone working in the technology sector is probably famil-
iar with the question: ”Have you tried turning it off and on again?”, as
this is usually the default question asked by tech support. Similarly, it
is known in search-based testing that metaheuristics might get trapped
in a plateau during a search. As a human, one can look at the gradient
of the fitness curve and decide to restart the search, so as to hopefully
improve the results of the optimization with the next run. Trying to au-
tomate such a restart, it has to be programmatically decided whether
the metaheuristic has encountered a plateau yet, which is an inherently
difficult problem. To mitigate this problem in the context of theoretical
search problems, the Bet and Run strategy was developed, where mul-
tiple algorithm instances are started concurrently, and after some time
all but the single most promising instance in terms of fitness values are
killed. In this paper, we adopt and evaluate the Bet and Run strategy for
the problem of test case generation. Our work indicates that use of this
restart strategy does not generally lead to gains in the quality metrics,
when instantiated with the best parameters found in the literature.

Keywords: Search Based Testing · Test Case Generation · Bet and Run.

1 Introduction

Software testing plays an important role in providing evidence for the quality
of software [17]. Due to the costs and complexity of writing tests manually, au-
tomating the generation of tests by metaheuristic search techniques is an active
field of research [16,17,21]. A popular example for such a search-based approach
to automated test case generation (TCG) is EvoSuite [5,6]. EvoSuite has shown
its practical relevance by producing tests that achieve “good levels” of code cov-
erage [7, p. 1] and detect real faults in open-source software [8]. The metaheuristic
used by EvoSuite has evolved over time according to the state of the art, which
is currently the Dynamic Many-Objective Sorting Algorithm (DynaMOSA) [18].

Due to the stochastic nature of metaheuristics, such algorithms are approxi-
mate and therefore “find in a reasonable computation time a solution that is as
good as possible, but not necessarily optimal” [2, p. 242]. Exploring the search
space stochastically, a metaheuristic typically yields different results with every
run, and might get trapped in an inferior part of the search space (e.g., a plateau
or local optimum) which leads to suboptimal results. As for any metaheuristic,
this also applies to DynaMOSA in the context of TCG.

The final authenticated version is available online in the Proceedings of the 12th Symposium on
Search-Based Software Engineering (SSBSE 2020) at Springer/SpringerLink.
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One way to improve the search results is to restart the metaheuristic when-
ever it is trapped in a plateau or local optimum to try out another run [12, 13].
However, such a restarting approach requires an appropriate strategy to be inte-
grated in the metaheuristic that determines the trap and restarts the search [10].
To avoid such a metaheuristic-specific strategy and explicit restarts, Friedrich et
al. [10] proposed generic Bet and Run, an approach that starts multiple short
sample runs of a metaheuristic, evaluates the intermediate results of these runs
after a certain point in time, and bets on the most promising run to continue the
search until the search budget is used. This approach is generic as it is indepen-
dent of the metaheuristic being used. This is in contrast to the original Bet and
Run that is intertwined with the metaheuristic [4]. Thus, by starting multiple
instances of a metaheuristic and selecting the most promising one, Bet and Run
turns the problem of repeatedly restarting an instance on its head. First, there is
no need to determine when a metaheuristic is trapped in an inferior part of the
search space to trigger a restart. Second, the effect of repeated restarts is still ob-
tained by starting and trying out multiple runs of the metaheuristic. The generic
Bet and Run has been successfully evaluated on two theoretical problems (Trav-
eling Salesperson and Minimum Vertex Cover) that are structurally different, so
that Friedrich et al. [10] expect that Bet and Run is generally helpful.

In this paper, we adopt the idea of the generic Bet and Run strategy, transfer
it to the TCG problem using EvoSuite/DynaMOSA, and evaluate its general
feasibility for TCG and its effectiveness in comparison to the state of the art,
being EvoSuite/DynaMOSA. In our Bet and Run approach, we split the total
time budget for generating test cases for a subject into two phases. In the first
phase, we start multiple instances of EvoSuite/DynaMOSA concurrently, each
with the same configuration but a different seed. Since Bet and Run is generic,
we can treat EvoSuite/DynaMOSA as a black box without having to change the
metaheuristic. At the end of the first phase, we sample the intermediate results
(test cases) in terms of the fitness score provided by EvoSuite. After the first
phase, we bet on the most promising instance that continues generating test cases
during the second phase, whereas all of the other instances will be terminated.
Accordingly, variants of Bet and Run in terms of how many instances will be
started concurrently, and how the total time budget is split into the two phases,
are possible and will be investigated in this paper. EvoSuite as the state-of-the-
art approach serves as our baseline. It starts a single instance of DynaMOSA
to generate test cases for a subject over the total time budget. We evaluate the
effectiveness—in terms of achieved code coverage—of our Bet and Run approach
in a head-to-head comparison with this baseline, giving both approaches the
same time budget to generate tests for 107 Java classes.

To the best of our knowledge, no previous study has applied a generic Bet and
Run approach to a search-based software engineering problem, let alone TCG.
Several TCG approaches in the literature, however, have considered restarts
of search. The Alternative Variable Method (AVM), a variant of hill climbing,
restarts the search with a randomly selected solution candidate to overcome lo-
cal optima, that is, when the fitness cannot be improved (cf. [1, 9, 11]). Chan et
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al. [3] use a restart (complete reset) as one way to forget test cases in adaptive
random testing, which should reduce overheads of restricting the search space.
Mathesen et al. [14] propose a metaheuristic whose global search proposes lo-
cations where the local search is restarted if a local minimum has been found.
Finally, a genetic algorithm has been proposed that produces the offspring (test
suites) randomly in a generation rather than by evolution if the current popula-
tion lacks diversity, which has an effect of restarting the search [22]. All of these
approaches provide metaheuristic-specific restart strategies that are intertwined
with the metaheuristic. In contrast, Bet and Run lifts the restart strategy to a
generic level that is independent of the metaheuristic being used.

The main goal of this paper is to evaluate the feasibility and effectiveness
of a generic Bet and Run approach for the TCG problem. For this purpose, we
investigate the following two research questions:

RQ1 Can generic Bet and Run be adapted to work on the TCG problem?
RQ2 Does generic Bet and Run show a significant improvement in the

quality of the generated tests as measured by coverage metrics?

Accordingly, the primary contributions of this paper are:

(1) As the first study, we investigate the applicability of generic Bet and Run on
the TCG problem using EvoSuite and DynaMOSA. This will answer RQ1.

(2) We conduct an empirical study to compare Bet and Run and default Evo-
Suite/DynaMOSA on real-world 107 Java classes from the SF110 corpus [7].

(3) We provide a statistical analysis of the effectiveness of Bet and Run and
EvoSuite/DynaMOSA. This will answer RQ2.

2 Test Case Generation with EvoSuite and DynaMOSA

The context of our work is the automated test case generation (TCG) problem
that is about generating good quality tests for a given software. Particularly, we
focus on generating unit tests, for which we use EvoSuite. EvoSuite is a popular
search-based “tool that automatically generates test cases with assertions for
classes written in Java code.” [5, p. 416]. The metaheuristic used in EvoSuite
has evolved over time from whole test suite generation [6] to DynaMOSA [18].

The Dynamic Many-Objective Sorting Algorithm (DynaMOSA) [18] is the
state-of-the-art many-objective genetic algorithm to solve the test case gener-
ation problem by redefining it into a many-objective problem. Conceptually,
DynaMOSA works on each statement (i.e., target to cover) of the class under
test individually, instead of trying to generate a test suite for all statements
simultaneously. Thus, it breaks the complex task of generating a test suite for
an entire class into more manageable smaller pieces. DynaMOSA also only com-
putes test cases for targets that can be reached immediately: All branches that
are still nested below other uncovered control flow nodes are temporarily ignored.
Thereby, DynaMOSA reduces the number of targets that are to be covered si-
multaneously and thus decreases computational complexity.
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Fig. 1. Example: Behavior of Bet and Run with n instances and a given run time
ttotal = tf + n · tk with a maximum initial run time tk for each instance. In this case
instance #2 showed the most promise at tk and was left running.

3 Bet and Run for Test Case Generation

Any metaheuristic can get stuck in local optima. Once trapped, such algorithms
do not tend to break free of such a plateau for a while. Friedrich et al. [10]
adopted and evaluated the approach Bet and Run for two general theoretical
computer science problems. Bet and Run was initially presented by Fischetti
and Monaci [4] for a sequential tree search method. Friedrich et al.’s approach
is no longer metaheuristic-specific and makes use of the typical multi-processing
architecture of modern hardware. The strategy is characterized by first starting
a number of algorithm instances that are identical in terms of call parameters
but contain different starting populations. After some time only the instance
that showed the most promise in terms of fitness values is then kept running.

Currently in the field of TCG, no restart strategies are automatically applied.
Unless the end-users intervene themselves, the optimization algorithm is simply
run once, and once only. But since the typically used optimization algorithms in
state-of-the-art tools such as EvoSuite are employing heuristics, the observations
above hold true in this field as well. Therefore, Bet and Run strategies are
generally applicable to the Test Case Generation problem as well.

In their 2018 paper [18], Panichella et al. state that DynaMOSA quickly in-
creases test suite quality, once it starts to generate tests. Therefore, DynaMOSA
is a good candidate for Bet and Run, as we can select the most promising in-
stance early in the search process.

In our study, we adapt the general Bet and Run approach as follows:

Definition 1. Bet and Run adaptation to TCG : Let ttotal be the full time budget
available to the optimization.

(i) Starting phase. First we start n instances of DynaMOSA simultaneously,
for some fixed n. While all typical run parameters are held fixed, the seed
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for the random number generator used for the optimization is varied across
all n instances.

(ii) Evaluation phase. After the initially selected but fixed time tk has passed,
we evaluate all n instances for their fitness in terms of the overall fitness
score computed by EvoSuite for the tests generated so far.

(iii) Elitism phase. We then kill the least fit n− 1 instances. If there are two or
more candidates with the exact same fitness score, we continue the first of
those candidates.

(iv) Run phase. Let the single remaining (and so far most promising) instance
continue until ttotal is fully used up. That is, the remaining instance runs
for tf := ttotal − n · tk.

This means n, tk, and ttotal are free parameters of our adaptation of the general
Bet and Run approach. An intuitive visualization is shown in Fig. 1.

Notation: Let p be the percentage so that tk := p · ttotal. We then say
RESTARTSn

p when we use n instances of the algorithm during the starting
phase and tk = p · ttotal as the evaluation time.

4 Implementation

In this section we provide an overview of the TCG project EvoSuite [5], as well
as the adaptations made by us, so that we may answer RQ1. We used EvoSuite
from a self-compiled 1.0.7 snapshot from the git repository1 This was done as
the -generateMO API option to use the state-of-the-art DynaMOSA algorithm
is not available yet in the official 1.0.6 release version of EvoSuite.

To answer RQ1, the first requirement is to make use of the EvoSuite frame-
work so as to extend its functionality with the generic Bet and Run restart
strategy. As this approach works on top of the tool itself, we do not need to
change any code of EvoSuite directly. Instead, we may use it as a blackbox tool,
that is, by using its command-line API we are able to get it to run tasks for us.

Therefore, it suffices to concentrate on providing a runner script implement-
ing the Bet and Run strategy, along with a set of tools needed for saving and
evaluating raw data. Apart from those scripts, all other program functionalities
(i.e., genetic operators, metrics, problem encoding, etc.) are those implemented
in the EvoSuite tool.

In most real-world tools, there is one limitation present: One cannot simply
“pause” a given algorithm run at some arbitrary point during computation,
evaluate the fitness at that point, and then decide whether to continue that run
or not. Instead, many tools provide a timeout function, that allows the user to
specify a runtime, after which the optimization is stopped and evaluated. For
implementing the Bet and Run approach, one therefore needs to fully restart the
most promising instance after the given evaluation. This, however, leads to two
main strategies of coping with the tool limitation in terms of remaining runtime:

1 Download of EvoSuite after commit https://github.com/EvoSuite/evosuite/
commit/e26a6b725539370aa22976f041f3304972e201a1 on January 10, 2020.

https://github.com/EvoSuite/evosuite/commit/e26a6b725539370aa22976f041f3304972e201a1
https://github.com/EvoSuite/evosuite/commit/e26a6b725539370aa22976f041f3304972e201a1
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– It is possible to give the remaining instance after the full restart a maximum
runtime of tf +1·tk, in order to emulate the theoretical idea of the generic Bet
and Run approach, where “pausing” the initial n instances would be possible.
However, this implies that Bet and Run has tk more computation time, when
compared to the normal algorithm run without the restart strategy.

– A second possibility is to give the most promising instance after the full
restart a maximum runtime of tf . In this case, the time limit ensures, that
both the normal algorithm and Bet and Run do not take more than ttotal.

In this paper, we decided to use the latter approach, so as to not give Bet and
Run any more runtime than the baseline is given. This helps to make the results
between both approaches comparable.

To run the prototype implementation of Bet and Run, EvoSuite as a stand-
alone, blackbox tool only requires a runner script to build the command-line
API calls. This paper provides two such runner scripts: the evosuiteRunner, and
the evosuiteBARRunner. Both of those runners are automatically called by the
main experiments.py. While the first runner simply provides an interface for
running the standard EvoSuite implementation on many classes in parallel (i.e.,
the RESTARTS1

100%), the second one includes all changes necessary for the Bet
and Run variants. Both runners also collect data provided by EvoSuite and write
the raw values to a checkpoint file per class. Additionally, both scripts are able
to parse this raw data and thus compress the verbose output to the metrics.

All used scripts, parameter and settings files, as well as the used EvoSuite
sources are made available publicly with the online resources of this paper2.

5 Evaluation

In this section, we present our experimental set up, lay out the methodology
with which we analysed the raw data gathered, present and discuss the results
of our analysis, and finally we briefly discuss threats to validity. We provide both
of the interesting raw data sets with the online resources of this paper.

5.1 General experimental set-up

All experiments of this paper, and the algorithms they are based upon, are im-
plemented in either Java OpenJDK 1.8.0 or Python 3.6.10. Additionally, for
building the EvoSuite files, a Maven installation is required. All other tool ver-
sions are listed in the online resources accompanying this paper.

Computational resources: The experiments were run concurrently on a Dell R920
compute server with 4 Intel Xeon E7-4880 v2 processors (60 cores) @ 2.5GHz,
1024GB RAM, and a Suse Leap 15 OS (running Linux kernel 4.12.14). For both
experimental approaches we used 40 parallel worker threads.

2 https://www.doi.org/10.5281/zenodo.3903206

https://www.doi.org/10.5281/zenodo.3903206
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Baseline Selection: To investigate both the applicability (RQ1) as well as the
effectiveness (RQ2) of the Bet and Run strategy, DynaMOSA is the natural
baseline to compare with. Not only is it the current state-of-the-art algorithm
in the field of Test Case Generation, it is also the algorithm extended in this
study: We implemented the restart strategy using the EvoSuite tool (by use of
its command-line API) and its implementation of the DynaMOSA algorithm.

Data Set Generation: Finding a set of classes that is both large enough to
be representative of the state of the art in software development, as well as
comparable to the studies in the field presents a certain challenge, as the adapted
data sets are often not made easily available for the public.

The SF100 corpus of classes is a collection of 100 Java projects from www.
sourceforge.net. The data set was designed to be statistically representative. In
2014 Fraser et al. [7] accounted for the fact that SourceForge is home to a large
number of older (and thus stale) projects, by revising the data set and adding
the 10 most popular projects to it. This resulted in the data set now known
as SF110 3. This benchmark has been used in many studies in the field [19, 20],
and most relevant to this study, it is also the main source of subjects for the
study by Panichella et al. [18], in which they introduced DynaMOSA. Thus, to
be comparable to their results, we chose to adopt the SF110 benchmark. As we
could not find the exact list of classes used by Panichella et al. in their 2018
study, we followed their class selection algorithm:

1. Compute McCabe’s cyclomatic complexity [15] for each method in the SF110
dataset using the CKJM library4.

2. Discard any project that only contains trivial methods (i.e., classes that only
contain methods with a cyclomatic complexity of 1).

3. Randomly sample from the remaining projects.

Applying the above algorithm to the SF110 corpus of classes resulted in a
dataset of 107 different, non-trivial classes from 68 projects as provided by the
SF110 corpus of classes. The projects vary widely in size and difficulty: from
a mere 18 branches on average (with 122 statements) in project lavalamp, to
an average of 2515 branches in a medial 5887 statements in project jmca. This
dataset was used for all experiments of this study. A complete list of all selected
classes are made public with the online resources accompanying this paper.

5.2 Experimental set-up for RQ1

RESTARTS1
100% is the standard run of a given algorithm without any restarts

– and is thus ideally suited as a baseline. Friedrich et al. [10] have shown that
RESTARTS40

1% is the parameter set that yields the best results for both theo-
retical problems in their study. Of the non-trivial settings, we thus initially try
RESTARTS40

1%, RESTARTS20
2%, and RESTARTS8

5%.

3 http://www.evosuite.org/experimental-data/sf110/
4 http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/

www.sourceforge.net
www.sourceforge.net
http://www.evosuite.org/experimental-data/sf110/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
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Therefore, to answer RQ1 and understand whether Bet and Run actually can
work in the field of TCG, we ran an experiment using the above-mentioned com-
putational settings, baseline, and dataset to test the four Bet and Run strategies.

The parameters for the Bet and Run experiments were thus set as follows:
n = 1, 40, 20, and 8 initial runs, as well as tk = 100%, 1%, 2%, and 5% of ttotal.
The total time budget (ttotal) was set to 5 minutes. In any run of the Bet and
Run strategies ttotal is split into n·tk and tf for the two phases (cf. Def. 1). Seeds
for the initial state of the random number generator were selected at random
for both the baseline and the initial phase of all employed Bet and Run strategy
executions. For the Bet and Run experiments, we set the timeout tk for all initial
instance runs via the -Dglobal timeout API parameter. On reaching time tk, we
evaluate each instance using the overall fitness score as provided by EvoSuite.
This fitness score is an approach level (i.e., a distance) and means “lower is
better”. After that evaluation, we only run the single most promising candidate
by restarting that instance with the timeout now set to tf , in an effort to not
give Bet and Run more runtime than the baseline. All four approaches were
tested 10 times each in order to account for the pseudo-random nature of the
employed DynaMOSA algorithm. A single experimental run of any given class
took between approximately 60s to 5min. The entire experiment for answering
RQ1 took about 3 full days per tested approach, when we used 40 concurrent
worker threads.

5.3 Answering RQ1

In our first experiment, neither RESTARTS40
1% nor RESTARTS20

2% managed
to generate any usable data. This is true for all 107 classes in the dataset.
This problem is due to the fact that the requested test case generation time
of the initial phase (tk) – as required by the respective restart strategy – was
too short for DynaMOSA to have managed to produce any tests while within
the actual generation phase of EvoSuite. The restart strategy thus could not
select any seed for the continued computation past tk and therefore failed. In
the RESTARTS8

5% experiment, this particular problem happened to two of the
selected classes: Evaluation of project weka, and MethodWriter of project jiprof.
For all other classes RESTARTS8

5% did manage to generate at least one test
suite over the ten experimental runs and thus qualified for further evaluation.

Answer to RQ1: The Bet and Run approach can indeed be adapted to
yield usable results within the field of TCG, as shown by our experimental
runs of RESTARTS8

5%.

5.4 Experimental set-up for RQ2

Using the result from RQ1, we select RESTARTS8
5% for the statistical com-

parison to the baseline. To determine the effectiveness of the selected Bet and
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Run strategy, we keep the dataset, computational set-up, and the parameters of
both strategies the same as they were set to in the experiment for RQ1. We do,
however, in order to generate a robust statistical evaluation repeat the execution
of each strategy 30 times. Furthermore, we also log for evaluation the following
fitness metrics upon fully using the time budget for each class.

Fitness Metrics: EvoSuite provides a number of different fitness metrics for
each run by default: An overall fitness score, as well as Line, Branch, Exception,
Weak Mutation, Output, Method, Method No Exception, and C Branch cover-
ages. Additionally, we also track per class and per experimental run if EvoSuite
encountered any internal errors during computation.

The overall fitness score is an aggregated approach level of the test suite to
covering the remaining targets. As this approach level is a distance, it is to be
read as “lower is better”. Any coverage metric is a percentage of reached coverage
and all are thus to be read as “higher is better.” The according definitions used
by EvoSuite may be found in [19], as well as in the source code of the tool. The
number of internal EvoSuite errors, which is also tracked, is an absolute value,
thus “lower is better”.

The full experiment for RQ2 took another 18 days. Note, that these times
do not include script run times for the subsequent evaluation of the raw data
gathered.

5.5 Evaluation methodology for RQ2

The first step in answering RQ2, is to provide an overview over the actual be-
havior of the collected measures with regards to the two experiments. For mean
values given in this paper the reader can safely assume “higher is better” for
every metric, with the exception of the two measures Time and Fitness Score.
The two excluded indicators need to be handled differently: The Fitness Score
is an approach level of the test suite (cf. Section 5.4), where “lower is better”.
The measure Time has only informative character and shows how long each of
the final instances spent in the actual generation phase.

In the subsequent statistical analysis (see Section 5.7), we employ the non-
parametric Wilcoxon Rank Sum hypothesis test to determine statistical signifi-
cance of our results for each class and each measure taken.

5.6 Answering RQ2

Generally, the results of our second experiment are structurally very similar
across the different classes, as well as metrics logged. Raw data from both the
baseline and the RESTARTS8

5% for all classes (that generated at least one test
case) and for all metrics are made available in the accompanying online resources.
There we provide the *.zip of all raw data gathered, as well as a *.txt file with
aggregated raw data, which was used in the evaluation below in this section.

We note that in the baseline experimental runs, 14 of the original 107 selected
classes are rendered unusable for statistical evaluation, due to an excessively
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high number of internal EvoSuite errors. Of the original set of classes in the
RESTARTS8

5% experiments, 15 are failures due to internal errors of the tool.
Of all failures 12 classes fail too often for both approaches, 3 only when using
DynaMOSA, and 4 only using Bet and Run. Of those 12 classes failing for both
approaches 1 class completely fails to generate any test cases for either approach
(class Evaluation of project weka). In total, this problem leads to 17 of the 107
classes not being eligible for statistical evaluation, apart from looking at which
of the approaches was able to execute EvoSuite more stably.

5.7 Statistical Analysis and Discussion

In this section, we will present the results of the statistical analysis for the
complete experiments of DynaMOSA and RESTARTS8

5%. We obtained the p-
values using the non-parametric Wilcoxon Rank Sum hypothesis test, as provided
by SciPy. Note that of the 107 initially selected classes only 90 were eligible for
statistical evaluation due to internal EvoSuite errors. Table 1 shows per metrics
collected the number of classes for which Bet and Run (BAR) is (i) identical
to, (ii) worse than, and (iii) better than the baseline (BL). In each column,
within the brackets we also show the number of statistically significant results
of the total number of classes within that field. For instance, the first line is
to be read as: For the metric Fitness Score there were a total of 28 classes
that led to identical results in both approaches. Of those 28, 28 are statistically
significant. Further there were 19 classes where the baseline outperformed the
Bet and Run approach, of which 2 were statistically significant. Finally, there
were 43 instances, where Bet and Run outperformed the baseline approach, of
which only 4 classes were statistically significant.

Table 1 shows that neither approach was significantly better than the other
overall. In fact, in most cases the p-value either does not reach statistical signif-
icance or even indicates that both approaches reach statistically the exact same
result. Over all 9 metrics and all 90 evaluated classes there were only 25 results
that show any statistically significant difference between the two approaches.
Of those, Bet and Run was 18 times significantly better than the baseline, and
7 times significantly worse (cf. Table 2). In contrast, over all 9 metrics and all
90 classes, we see 460 instances in which both approaches yield the exact same
result. This means, when looking at all 810 results (i.e., 9 metrics x 90 classes)
785 instances are either only marginally different, or yield the exact same result.

We argue that this is indicative of a limitation of the approach: In a real-
world setting in the TCG context, runs typically are strictly limited in their
computation times. This strict and more importantly short time budget for the
genetic algorithm appears to mitigate the plateauing problem quite effectively.
Furthermore, the use of the state-of-the-art DynaMOSA algorithm with its op-
timization mechanisms that work on minimizing the initial number of coverage
targets (i.e., only search solutions for branches that can actually be covered
at this time) help to further decrease the potential of getting stuck in a local
optimum.
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Table 1. Shown here are the aggregated results of the statistical analysis over
all metrics when comparing the baseline DynaMOSA (BL) and the Bet and Run
RESTARTS8

5% strategy (BAR), where BAR = BL means both approaches show sta-
tistically the same result (p-value = 1.0), BAR < BL means the Bet and Run approach
was worse than the baseline, and BAR > BL means Bet and Run was better than the
Baseline. Any value inside of brackets indicate the number of statistically significant
results in that field. Note that of the 107 initially selected classes only 90 were eligible
for statistical evaluation due to internal EvoSuite errors.

Metric BAR = BL BAR < BL BAR > BL

Fitness Score 28 (28) 19 (2) 43 (4)
Line Coverage 39 (39) 13 (1) 38 (3)
Branch Coverage 35 (35) 16 (2) 39 (4)
CBranch Coverage 36 (36) 16 (2) 38 (4)
Method Coverage 78 (78) 6 (0) 6 (0)
Method no Exception Coverage 69 (69) 11 (0) 10 (1)
Exception Coverage 80 (80) 5 (0) 5 (0)
Output Coverage 57 (57) 12 (0) 21 (1)
Weak Mutation Coverage 38 (38) 19 (0) 33 (1)

Panichella et al. state in their 2018 paper [18] that DynaMOSA quickly in-
creases test suite quality, once it starts to generate tests. We can confirm this
behavior: In our early experiments for RQ1, we saw that after a short initial-
ization phase the algorithm managed to quickly improve fitness scores across
all metrics for the population. We believe this quick improvement phase at the
beginning is due to the fact that DynaMOSA only works on targets that can
possibly be covered currently, instead of working immediately on every single
target (i.e., the mechanism that the algorithm does not start working on targets
that are still restricted by higher level, yet uncovered targets). This behavior is
also a possible explanation for what we stated above: Neither RESTARTS40

1%,
nor RESTARTS20

2% managed to generate any tests. When we are using these
settings, no candidate instance can be chosen to survive past the decision time
tk, as tk was too short to get past the above-mentioned initialization phase.
We note that while RESTARTS40

1% was shown in Friedrich et al. [10] to be the
best strategy, we cannot confirm this finding here. Moreover, we also cannot
safely confirm quality increases in the test suite generated by EvoSuite. In fact,
we would argue that the additional computational overhead is indeed an argu-
ment against usage of that particular restart strategy in the field of Test Case
Generation, when also looking at the achieved results.

We have, however, seen a significant increase (p = 0.002930) in tool stability
over all selected classes, when employing the Bet and Run strategy RESTARTS8

5%.
While the baseline showed a total of 578 internal errors of the tool, the Bet and
Run approach showed 500 errors across all classes. This difference of exactly 78
errors occurred over all 3210 experimental runs per approach (30 repetitions x
107 classes). That means in 15.6% of all experimental runs, the EvoSuite tool
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Table 2. Shown here are the classes that reached a significant difference when com-
paring the baseline DynaMOSA and the Bet and Run RESTARTS8

5% strategy.

Metric
Stat. sig.
worse classes

Stat. sig.
better classes

Fitness Score
99 newzgrabber: Downloader
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Line Coverage 12 dsachat: Handler
19 jmca: JMCAAnalyzer
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Branch Coverage
39 diffi: IndexedString
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

CBranch Coverage
39 diffi: IndexedString
12 dsachat: Handler

19 jmca: JMCAAnalyzer
61 noen: ProbeInformation
82 ipcalculator: BinaryCalculate
86 at-robots2-j: RobotRenderer

Method Coverage - -
Met. no Exc. Cov. - 86 at-robots2-j: RobotRenderer

Exception Cov. - -
Output Coverage - 50 biff: Scanner
Weak Mut. Cov. - 61 noen: ProbeInformation

encountered errors during the RESTARTS8
5% experiments, in comparison with

18.0% in the normal behavior EvoSuite experiments. This difference can be ex-
plained by the transience of internal EvoSuite errors, where a simple restart may
fix the problem thanks to the selection of a new random seed value. As these
transient internal tool errors usually happen very early during computation and
since the Bet and Run restart strategy never selects any seed value that showed
an error, this is expected behavior of the employed strategy. We assume the
rather high number of internal errors by EvoSuite is due to the fact that we
employed a self-compiled (and thus potentially unstable) tool snapshot, instead
of an actual release of the software. We therefore argue, that unless tool stability
is of particular importance to the use case, the statistically significant gains in
this metric do not outweigh computational overhead needed for those increases.

Answer to RQ2: Apart from statistically significant increases in tool
stability, we cannot confirm any gains in the remaining nine metrics when
using Bet and Run with the best parameters found in literature. In fact,
we question the effectiveness of Bet and Run in the field of TCG, as time
constraints and highly specialized algorithms (e.g., DynaMOSA) in this
field effectively mitigate the typical plateauing problem of metaheuristics.
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5.8 Threats to Validity and Future Work

In this paper, we rely on a search-based approach with a restart strategy to
solve the Test Case Generation Problem. As such we see the following potential
threats to the validity of our work.

Internal: In all genetic algorithms, a fair amount of (pseudo-)randomness is
involved in the generation of their respective results. In DynaMOSA, the ran-
domness problem is somewhat alleviated by the use of the archiving function
– a test case covering some new target is never lost due to future mutations
again. Additionally, we try to mitigate this threat by (i) sampling 30 runs per
selected class and evaluating all results only in the average case; as well as (ii)
providing online the seed values for all runs, both in the normal EvoSuite and
the Bet and Run experiments (in the latter we provide the seeds that showed the
most promise at time tk). The seed values are made available in the aggregated
result data files of the online resources. Furthermore, there exists the possibility
of faults within our strategy implementation. We tried to minimize this threat
by use of standard components (such as the EvoSuite implementation of Dy-
naMOSA or the SciPy libraries for the statistical testing) wherever possible. All
implementations, codes, and scripts are made available for inspection, review,
and validation with the online resources accompanying this study.

External: Our evaluation is based upon the benchmark data set “SF110 Corpus
of Classes” as provided by Fraser et al. [7]. While Fraser et al. argue that they
selected 100 statistically representative SourceForge projects and even further
enhanced this set with another 10 “popular” projects, the possibility that the
heterogeneous nature of software is indeed not fully accounted for still exists:
The restart strategy might behave differently for a different set of real classes.
We leave for future work to revisit the use of the restart strategy with a different
data set.

Construct: The first threat in this category that we can see is the possibility
of the experiments not yet having encountered any plateaus. This threat could
only be mitigated by redoing the entire set of experiments with a much higher
timeout. However, this would go against real world usage of the EvoSuite tool.
In practical settings, the tool is used to quickly generate a test suite for project
classes – extremely high timeouts are thus the exact opposite of the intended use.
We will, however, leave for future work a confirmation study with those increased
timeouts: It is a matter of running the provided implementation with a new set
of parameters. A second threat of this family is that while we selected restart
strategy parameters that were shown to be “good” in the study by Friedrich et
al. [10], “good” in the context of TCG might be something else entirely. In our
case, it may be the case that most of tk is in fact used for tool initialization,
and no significant test generation is performed so as to correctly estimate the
”best” performing one. Similarly to the first threat to construct validity, a pa-
rameter tuning study with a new set of parameters is left for future work, as
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even more parameters for the restart strategy would go beyond the scope of this
initial study. And thirdly, by forcing us to restart the most promising instance
completely, the implementation limited us to choose between either giving the
remaining instance in the run phase a maximum run-time of (i) tf + tk, or (ii)
tf . We chose the latter, so that both Bet and Run and the baseline do not use
more than ttotal. This leads to the evaluated instance having p% less run-time,
while the total run-time of the Bet and Run approach is 100% of ttotal. Had we
used approach (i), however, Bet and Run would have had a total run-time of
ttotal + tk.

6 Conclusion

In this study, we provided a tool to run and evaluate the generic restart strategy
Bet and Run in the context of Test Case Generation using EvoSuite and the
state-of-the-art DynaMOSA algorithm. To the best of our knowledge this was
the first study that applies the generic Bet and Run approach to this field.
Our work indicates that use of a restart strategy instantiated with the best
parameters found in the literature does not generally lead to gains in the quality
metrics: Not a single metric was improved by the Bet and Run restart strategy
when compared with the EvoSuite/DynaMOSA as the baseline. In fact, for most
selected classes, both approaches showed statistically the exact same results.

Only the stability of runs showed statistically significant improvements when
Bet and Run was employed, as the number of internal EvoSuite errors decreased
in the final generation process. However, from what we saw in our experiments,
most of the internal EvoSuite errors are transient: In a real-world setting where
the tool did not generate a test suite immediately, it is more than likely that a
second (manually started) run with the same parameters would fix the problem.

Our results indicate, that (contrary to the promising results in the 2017
study by Friedrich et al. [10]) the restart strategy Bet and Run is not suited for
improving the quality of automatically generated test suites using EvoSuite and
its state-of-the-art DynaMOSA implementation considering the best Bet and
Run parameters found in literature.
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