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Abstract Automated unit test generation is an established research field,
and mature test generation tools exist for statically typed programming
languages such as Java. It is, however, substantially more difficult to auto-
matically generate supportive tests for dynamically typed programming
languages such as Python, due to the lack of type information and the
dynamic nature of the language. In this paper, we describe a foray into
the problem of unit test generation for dynamically typed languages. We
introduce PYNGUIN, an automated unit test generation framework for
Python. Using PYNGUIN, we aim to empirically shed light on two central
questions: (1) Do well-established search-based test generation methods,
previously evaluated only on statically typed languages, generalise to
dynamically typed languages? (2) What is the influence of incomplete
type information and dynamic typing on the problem of automated test
generation? Our experiments confirm that evolutionary algorithms can
outperform random test generation also in the context of Python, and
can even alleviate the problem of absent type information to some de-
gree. However, our results demonstrate that dynamic typing nevertheless
poses a fundamental issue for test generation, suggesting future work on
integrating type inference.

Keywords: Dynamic Typing - Python - Random Test Generation -
Whole Suite Test Generation

1 Introduction

Unit tests can be automatically generated to support developers and the dynamic
analysis of programs. Established techniques such as feedback-directed random
test generation 15| or evolutionary algorithms are implemented in mature
research prototypes, but these are based on strong assumptions on the availability
of static type information, as is the case in statically typed languages like
Java. Dynamically typed languages such as Python or JavaScript, however,
have seen increased popularity within recent years. Python is the most popular
programming language in the category of dynamically typed languages, according
to, for example, the IEEE Spectrum Rankin@ It is heavily used in the fields of
machine learning and data analysis, and it is also popular in other domains. This

! https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019,
accessed 2020-07-25.
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can be seen, for example, from the Python Package Index (PyPI), which contains
more than 200000 packages at the time of writing. In languages like Python, the
type information that automated unit test generators require is not available.

An automated unit test generator primarily requires type information in order
to select parameters for function calls and to generate complex objects. If type
information is absent, the test generator can only guess which calls to use to
create new objects, or which existing objects to select as parameters for new
function calls. Existing test generators for dynamically typed languages therefore
resort to other means to avoid having to make such choices in the first place, for
example by using the document object model of a web browser to generate tests
for JavaScript [14], or by targetting the browser’s event handling system rather
than APIs [3}/12]. However, there is no general purpose unit test generator at
API level yet for languages like Python.

In order to allow test generation research to expand its focus from statically
to dynamically typed languages, in this paper we introduce PYNGUIN, a new
automated test generation framework for Python. PYNGUIN takes as input a
Python module and its dependencies, and aims to automatically generate unit
tests that maximise code coverage. In order to achieve this, PYNGUIN implements
the established test generation techniques of whole-suite generation [9] and
feedback-directed random generation [15]. PYNGUIN is available as open source
to support future research on automated test generation for dynamically typed
programming languages. PYNGUIN is designed to be extensible; in this paper we
focus on established baseline algorithms for foundational experiments, we will
add further algorithms such as DynaMOSA [16] in future work.

Using PYNGUIN, we empirically study the problem of automated unit test
generation for Python using ten popular open source Python projects taken from
GitHub, all of which contain type information added by developers in terms
of type annotations. This selection allows us to study two central questions:
(1) Do previous findings, showing that evolutionary search achieves higher code
coverage than random testing [5], also generalise to dynamically typed languages?
(2) What is the influence of the lack of type information in a dynamically typed
language like Python on automated unit test generation?

In detail, the contributions of this paper are the following;:

1. We introduce PYNGUIN, a new framework for automated unit test generation
for the Python programming language.

2. We replicate experiments previously conducted only in the context of statically
typed languages to compare test generation approaches.

3. We empirically study the influence of type information on the effectiveness
of automated test generation.

Our experiments confirm that the whole-suite approach generally achieves
higher code coverage than random testing, and that the availability of type
information also leads to higher resulting coverage. However, our experiments
reveal several new technical challenges such as generating collections or iterable
input types. Our findings also suggest that the integration of current research on
type inference is a promising route forward for future research.
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2 Background

The main approaches to automatically generate unit tests are either by creating
random sequences, or by applying metaheuristic search algorithms. Random
testing assembles sequences of calls to constructors and methods randomly, often
with the objective to find undeclared exceptions [6] or violations of general object
contracts |15], but the generated tests can also be used as automated regression
tests. The effectiveness of random test generators can be increased by integrating
heuristics [13}/17]. Search-based approaches use a similar representation, but
apply evolutionary search algorithms to maximize code coverage [1,/4,/9,/19].

As an example to illustrate how type information is used by existing test
generators, consider the following snippets of Java (left) and Python (right) code:

class Foo { class Foo:
Foo(Bar b) { ... } def __init__(self, Db):
void doFoo(Bar b) { ... } } def do_foo(self, b):
class Bar { class Bar:
Bar () { ... } def __init__(self):
Bar doBar(Bar b) { ... } } def do_bar(self, b):

Assume Foo of the Java example is the class under test. It has a dependency
on class Bar: in order to generate an object of type Foo we need an instance of
Bar, and the method doFoo also requires a parameter of type Bar.

Random test generation would typically generate tests in a forward way.
Starting with an empty sequence to = (), all available calls for which all parameters
can be satisfied with objects already existing in the sequence can be selected.
In our example, initially only the constructor of Bar can be called, since all
other methods and constructors require a parameter, resulting in t; = (0; =
new Bar()). Since ¢; contains an object of type Bar, in the second step the test
generator now has a choice of either invoking doBar on that object (and use the
same object also as parameter), or invoking the constructor of Foo. Assuming the
chosen call is the constructor of Foo, we now have t3 = (01 = new Bar(); 02 =
new Foo(o1);). Since there now is also an instance of Foo in the sequence, in the
next step also the method doFoo is an option. The random test generator will
continue extending the sequence in this manner, possibly integrating heuristics
to select more relevant calls, or to decide when to start with a new sequence, etc.

An alternative approach, for example applied during the mutation step of an
evolutionary test generator, is to select necessary calls in a backwards fashion.
That is, a search-based test generator like EVOSUITE [9] would first decide that
it needs to, for example, call method doFoo of class Foo. In order to achieve this,
it requires an instance of Foo and an instance of Bar to satisfy the dependencies.
To generate a parameter object of type Bar, the test generator would consider
all calls that are declared to return an instance of Bar—which is the case for the
constructor of Bar in our example, so it would prepend a call to Bar () before
the invocation of doFoo. Furthermore, it would try to instantiate Foo by calling
the constructor. This, in turn, requires an instance of Bar, for which the test
generator might use the existing instance, or could invoke the constructor of Bar.
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In both scenarios, type information is crucial: In the forward construction
type information is used to inform the choice of call to append to the sequence,
while in the backward construction type information is used to select generators
of dependency objects. Without type information, which is the case with the
Python example, a forward construction (1) has to allow all possible functions at
all steps, thus may not only select the constructor of Bar, but also that of Foo
with an arbitrary parameter type, and (2) has to consider all existing objects
for all parameters of a selected call, and thus, for example, also str or int.
Backwards construction without type information would also have to try to select
generators from all possible calls, and all possible objects, which both result in a
potentially large search space to select from.

Type information can be provided in two ways in recent Python versions:
either in a stub file that contains type hints or directly annotated in the source
code. A stub file can be compared to C header files: they contain, for example,
method declarations with their according types. Since Python 3.5, the types can
also be annotated directly in the implementing source code, in a similar fashion
known from statically typed languages (see PEP 484E|).

3 Search-based Unit Test Generation

3.1 Python Test Generation as a Search Problem

As the unit for unit test generation, we consider Python modules. A module is
usually identical with a file and contains definitions of, for example, functions,
classes, or statements; these can be nested almost arbitrarily. When the module
is loaded the definitions and statements at the top level are executed. While
generating tests we do not only want all definitions to be executed, but also all
structures defined by those definitions, for example, functions, closures, or list
comprehensions. Thus, in order to apply a search algorithm, we first need to
define a proper representation of the valid solutions for this problem.

We use a representation based on prior work from the domain of testing
Java code [9]. For each statement s; in a test case t; we assign one value v(s;)
with type 7(v(s;)) € T, with the finite set of types 7 used in the subject-under-
test (SUT) and the modules imported by the SUT. We define four kinds of
statements: Primitive statements represent int, float, bool, and str variables,
for example, var0 = 42. Value and type of a statement are defined by the
primitive variable. Note that although in Python everything is an object, we
treat these values as primitives because they do not require further construction
in Python’s syntax. Other simple types, such as lists, require the construction of
the list and its elements, which we do not yet handle. Constructor statements
create new instances of a class, for example, var0 = SomeType(). Value and
type are defined by the constructed object; any parameters are satisfied from the
set V ={uv(sk) | 0 <k < j}. Method statements invoke methods on objects, for
example, varl = var0.foo(). Value and type are defined by the return value

2 https://python.org/dev/peps/pep- 0484/} accessed 2020-07-25.
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of the method; source object and any parameters are satisfied from the set V.
Function statements invoke functions, for example, var2 = bar (). They do not
require a source object but are otherwise identical to method statements. This
representation is of variable size; we constrain the size of test cases [ € [1, L] and
test suites n € [1, N]. In contrast to prior work on testing Java [9], we do not
define field or assignment statements; fields of objects are not explicitly declared
in Python but assigned dynamically, hence it is non-trivial to identify the existing
fields of an object and we leave it as future work.

The search operators for this representation are based on those used in
EvOSUITE [9): Crossover takes as input two test suites P, and P,, and generates
two offspring O and O,. Individual test cases have no dependencies between
each other, thus the application of crossover always generates valid test suites
as offspring. Furthermore, the operator decreases the difference in the number
of test cases between the test suites, thus abs(|O1| — |Oz|) < abs(|P1| — |Pe|).
Therefore, no offspring will have more test cases than the larger of its parents.

When mutating a test suite T', each of its test cases is mutated with probabil-
ity ﬁ After mutation, we add new randomly generated test cases to T. The
first new test case is added with probability o. If it is added, a second new test
case is added with probability o?; this happens until the i-th test case is not
added (probability: 1 — o). Test cases are only added if the limit N has not
been reached, thus |T'| < N. The mutation of a test case can be one of three
operations: remove, which removes a statement from the test case, change, which
randomly changes values in a statement—for example, by adding random values
to numbers, adding/replacing/deleting characters, or changing method calls—and
insert, which adds new statements at random positions in the test case. Each of
these operations can happen with the same probability of é A test case that has
no statements left after the application of the mutation operator is removed from
the test suite T'. For constructing the initial population, a random test case ¢ is
sampled by uniformly choosing a value r with 1 < r < L, and then applying the
insertion operator repeatedly starting with an empty test case t', until |t'| > r.

3.2 Covering Python Code

A Python module contains various control structures, for example, if or while
statements, which are guarded by logical predicates. The control structures are
represented by conditional jumps at the bytecode level, based on either a unary
or binary predicate. We focus on branch coverage in this work, which requires
that each of those predicates evaluates to both true and false.

Let B denote the set of branches in the SUT—two for each conditional jump
in the byte code. Everything executable in Python is represented as a code object.
For example, an entire module is represented as a code object, a function within
that module is represented as another code object. We want to execute all code
objects C' of the SUT. Therefore, we keep track of the executed code objects Crp
as well as the minimum branch distance dmin(b, T') for each branch b € B, when
executing a test suite T. By C B denotes the set of taken branches. We then

define the branch coverage cov(T') of a test suite T as cov(T) = %
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The fitness function required by the genetic algorithm of our whole-suite
approach is constructed similar to the one used in EVOSUITE [9] by incorporating
the branch distance. Branch distance is a heuristic to determine how far a
predicate is away from evaluating to true or false, respectively. In contrast to
previous work on Java, where most predicates at the bytecode level operate only
on Boolean or numeric values, in our case the operands of a predicate can be
any Python object. Thus, as noted by Arcuri [2], we have to define our branch
distance in such a way that it can handle arbitrary Python objects.

Let @ be the set of possible Python objects and let © := {=,#, <, <, >, >, €
,&,=,%#} be the set of binary comparison operators (remark: we use ‘=’, ‘=", and
‘e’ for Python’s ==, is, and in keywords, respectively). For each 6 € ©, we define
a function &y : O x O — R} U{oo} that computes the branch distance of the true
branch of a predicate of the form a 6 b, with a,b € O and 6 € 6. By d5(a,b) we
denote the distance of the false branch, where 6 is the complementary operator
of 8. Let further k be a positive number, and let lev(xz, y) denote the Levenshtein
distance [11] between two strings « and y. The predicates is_numeric(z) and
is_string(z) determine whether the type of their argument z is numeric or a
string, respectively.

0 a="b
5_(a,b) la —b]  a#bAis numeric(a) Ais_numeric(b)
=\a, - . . . .
B lev(a,b) a # bAis_string(a) Ais_string(b)
00 otherwise
0 a<b
d<(a,b) =qa—b+k a>bAis_numeric(a) Ais_numeric(b)
00 otherwise
0 a<b
d<(a,b) =qa—b+k a>bAis_numeric(a) Ais_numeric(b)
00 otherwise

0> (av b) =0< (ba a)
52 (0,, b) = 6§ (bv CL)

k otherwise

(59(@,[)):{0 abb 96{?‘56,%,:,#}

Note that every object in Python represents a Boolean value and can therefore
be used as a predicate. We assign a distance of 0 to the true branch of such a
unary predicate, if the object represents a true value, otherwise k. Future work
shall refine the branch distance for different operators and operand types.

The fitness function estimates how close a test suite is to covering all branches
of the SUT. Thus, every predicate has to be executed at least twice, which we
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enforce in the same way as existing work [9]: the actual branch distance d(b, T)
is given by

0 if the branch has been covered
d(b,T) = S v(dmin(b,T)) if the predicate has been executed at least twice
1 otherwise

with v(z) = 77 being a normalisation function [9].
Finally, we can define the resulting fitness function f of a test suite T as

F(T)=|C| = |Cr| + ) d(b,T)

beB

3.3 The PYNGUIN Framework

PYNGUIN is a framework for automated unit test generation written in and for
the Python programming language. The framework is available as open-source
software licensed under the GNU Lesser General Public License from its GitHub
repositoryﬂ It can also be installed from the Python Package Index (PyPI)E|
using the pip utility.

PYNGUIN takes as input a Python module and allows the generation of unit
tests using different techniques. For this, it parses the module and extracts
information about available methods in the module and types from the module
and its imports. So far, PYNGUIN focuses on test-input generation and excludes
the generation of oracles. A tool run emits the generated test cases in the style
of the widely-used PYTESTE| framework or for the unittest module from the
Python standard library.

PYNGUIN is built to be extensible with other test generation approaches and
algorithms. For experiments in this paper, we implemented a feedback-directed
random approach based on RANDOOP [15] in addition to the whole-suite test-
generation approach. Feedback-directed test generation starts with two empty
test suites, a passing and a failing test suite, and adds statements randomly to an
empty test case. After each addition, the test case is executed and the execution
result is retrieved. Successful test cases, that is, test cases that do not raise
exceptions are added to the passing test suite; a test case that raises an exception
is added to the failing test suite. In the following, the algorithm randomly chooses
a test case from the passing test suite or an empty test case and adds statements
to it. We refer the reader to the description of RANDOOP [15] for details on the
algorithm; the main differences of our approach are that it does not yet check for
contract violations, and does not require the user to provide a list of relevant
classes and methods, which RANDOOP does.

3 https://github.com/se2p/pynguin, accessed 2020-07-27.
4 https://pypi.org/project/pynguin/, accessed 2020-07-25.
% https://www.pytest.org, accessed 2020-07-25.
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4 Experimental Evaluation

Using our PYNGUIN test generator, we aim to empirically study automated
unit test generation on Python. First, we are interested in determining whether
previous findings on the performance of test generation techniques established in
the context of statically typed languages generalise also to Python:

Research Question 1 (RQ1|) How do whole-suite test generation and random
test generation compare on Python code?

A central difference between prior work and the context of Python is the
type information: Previous work evaluated test-generation techniques mainly for
statically typed languages, such as Java, where information on parameter types is
available at compile time, that is, without running the program. This is not the
case for many programs written in dynamically typed languages, such as Python.
Therefore, we want to explicitly evaluate the influence of the type information
for the test-generation process:

Research Question 2 (R How does the availability of type information
influence test generation?

4.1 Experimental Setup

In order to answer the two research questions, we created a dataset of Python
projects for experimentation. We used the ‘typed’ category of the PyPI package
index of Python projects, and selected ten projects by searching for projects that
contain type hints in their method signatures, and that do not have dependencies
to native-code libraries, such as numpy. Details of the chosen projects are shown
in Table [T} the column Project Name gives the name of the project on PyPI; the
lines of code were measured with the CLOdﬂ utility tool. The table furthermore
shows the absolute average number of code objects, predicates, and detected
types per module of each project. The former two measures give an insight on
the project’s complexity; higher numbers indicate larger complexity. The latter
provides an overview how many types PYNGUIN was able to parse (note that
PYNGUIN may not be able to resolve all types).

The central metric we use to evaluate the performance of a test generation
technique is code coverage. In particular, we measure branch coverage at the
level of bytecode; like in Java bytecode, complex conditions are compiled to
nested branches with atomic conditions also in Python code. In addition to the
final overall coverage, we also keep track of coverage over time to shed light on
the speed of convergence. In order to statistically compare results we use the
Mann-Whitney U-test and the Vargha and Delaney effect size Ay,

We executed PYNGUIN in four different configurations: First, we executed
PYNGUIN using random test generation and whole test suite generation; second,
we ran PYNGUIN with the developer-written type annotations contained in the

S https://github.com/AlDanial/cloc, accessed 2020-07-25.
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Table 1: Projects used for evaluation

Project Name Version LOCs Modules CodeObjs. Preds. Types
apimd 1.0.2 316 1 35.0 83.0 11.0
async_btree 1.0.1 284 6 9.0 8.7 6.3
codetiming 1.2.0 85 2 18.0 8.0 6.0
docstring_parser 0.7.1 608 6 12.0  15.7 9.5
flutes 0.2.0.post0 1085 9 19.0  26.0 5.0
flutils 0.6 1715 13 10.2 223 8.4
mimesis 4.0.0 1663 34 12.3 5.7 9.2
pypara 0.0.22 1305 6 472 235 120
python-string-utils 1.0.0 476 4 21.0 295 6.5
pytutils 0.4.1 1108 23 8.2 6.6 6.1
Total 8645 104 191.9 229.0 79.9

projects, and without them. To answer RQ1, we compare the performance of
random test generation and whole test suite generation; to answer RQ2 we
compare the performance of each of these techniques for the case with and
without type information.

For each project, PYNGUIN was run on each of the constituent modules in
sequence. We executed PYNGUIN in GIT revision 5f538833 in a Docker container
that is based on Debian 10 and utilises Python 3.8.3. In line with previous
work, we set the maximum time limit for the test-generation algorithms, that
is, the time without analysing the module-under-test and without export of the
results, to 600s per module. We ran PYNGUIN 30 times on each module and
configuration to minimise the influence of randomness. All experiments were
executed on dedicated compute servers equipped with Intel Xeon E5-2690v2
CPUs and 64 GB RAM, running Debian 10. All scripts and the raw data are
available as supplementary materiaﬂ

4.2 Threats to Validity

Internal Validity The standard coverage tool for Python is COVERAGE.PY, which
offers the capability to measure branch coverage. However, it measures branch
coverage by comparing which transitions between source lines have occurred and
which are possible. This method of measuring branch coverage is imprecise, be-
cause not every branching statement necessarily leads to a source line transition,
for example, x = 0 if y > 42 else 1337. We thus implemented our own cov-
erage measurement. We tried to mitigate possible errors in our implementation,
by providing sufficient unit tests for it.

Ezxternal Validity We used 104 modules from ten different Python projects for
our experiments. It is conceivable that the exclusion of projects without type

"https://github.com/se2p/artifact-pynguin-ssbse2020, accessed 2020-07-27.


https://github.com/se2p/artifact-pynguin-ssbse2020

10 S. Lukasczyk et al.

Coverage per Project (with types) Coverage per Project (no types)

;:Z = ?D ?F B@ I (=i ED i
.0 R ! : B!

—
HT1]

async_btree
codetiming
docstring_parser
flutes

flutils

mimesis

pypara
python-string-utils
pytutils
async_btree
codetiming
docstring_parser
flutils

mimesis

pypara
python-string-utils
pytutils

(a) With type information (b) Without type information

Figure 1: Coverage per project and configuration

annotations or native-code libraries leads to a selection of smaller projects, and
the results may thus not generalise to other Python projects. However, besides
the two constraints listed, no others were applied during the selection.

Construct Validity Methods called with wrong input types may still cover parts
of the code before possibly raising exceptions due to the invalid inputs. We
conservatively included all coverage in our analysis, which may improve coverage
for configurations that ignore type information, and thus reduce the effect we
observed. However, it does not affect our general conclusions. Further, we cannot
measure fault finding capability as our tool does not generate assertions, which
is explicitly out of scope of this work.

4.3 RQ1: Whole-suite Test Generation vs. Random Testing

Figure [1| provides an overview over the achieved coverage per project in box
plots. Each data point in the plot is one achieved coverage value for one of the
modules of the project. Figure [Ta] reports the coverage values for whole-suite and
random test generation with available type hints, whereas Fig. reports the
same without the usage of type hints to guide the generation.

Coverage values range from 0% to 100% depending on the project. The
coverage achieved varies between projects, with some projects achieving generally
high coverage (for example, python-string-utils, mimesis, codetiming), and
others posing challenges for PYNGUIN (for example, apmid, async_btree, pypara,
flutes). For example, for the apimd project without type information the cover-
age is slightly above 20 %, which is the coverage achieved just by importing the
module. In Python, when a module is imported, the import statements of the
module, as well as class and method definitions are executed, and thus covered.
Note that this does not execute the method bodies. For other projects with
low coverage, PYNGUIN is not able to generate reasonable inputs, for example,
higher-order functions or collections, due to technical limitations.
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Figure 2: Effect sizes of whole suite versus random generation. Values greater
than 0.500 indicate whole suite is better than random.

To better understand whether whole-suite test generation performs better
than random test generation, Fig. |2a) reports the Ay effect sizes for the per—
module comparison of the two with avallable type information, whereas Fig.
reports the same without available type information. In both box plots, a Value
greater than 0.500 means that whole-suite performs better than random test
generation, that is, yields higher coverage results. Both plots show that on
average whole-suite does not perform worse than random and, depending on
the project, is able to achieve better results in terms of coverage (average Ars
with type information: 0.618, without type information: 0.603). The effect of
these improvements is significant (p < 0.05) for six out of ten projects, most
notably for apimd (A5 = 1.00, p—value < 0.001), python-string-utils (A, =
0.705, p—value < 0.001), and codetiming (Alg = 0.636, p—value = 0.005 31).

For the other projects the effect is negligible. In case of mimesis (A2 = 0.530)
this is due to high coverage values in all configurations—most method parameters
expect primitive types, which are also used for input generation if no type
information is given. Other projects require specific technical abilities, for example,
most methods in async_btree (12112 = 0.535) are coroutines, which require special
calls that cannot currently be generated by PYNGUIN. The consequence of this
technical limitations is that PYNGUIN cannot reach higher coverage independent
of the used algorithm in these cases. We observed that methods under test often
require collection types as inputs, in Python prevalently lists and dictionaries.
Also generating these input types would allow us to execute more parts of the
code which would lead to higher coverage and thus better results. We leave this,
however, as future work.

A further current limitation of our framework lies in how the available type
information is processed. PYNGUIN can currently only generate inputs for concrete
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types, unions of types, and the Any type—for which it attempts to use a random
type from the pool of available types in the SUT. Future work shall handle
sub-typing relations as well as generic types . Another prevalent parameter
type that limits our current tool are callables, that is, higher order functions that
can be used, for example, as call backs. Previous work has shown that generating
higher-order functions as input types is feasible for dynamically typed languages
and beneficial for test generation [18]. Furthermore, PYNGUIN currently only has
a naive static seeding strategy for constants that incorporates all constant values
from the project under test into test generation, whereas seeding has been show
to have a positive influence on the quality of test generation since it allows
better-suited input values.

Figure [3] shows the development of the average coverage over all modules
over the available generation time of 600s. The line plot clearly indicates that
whole-suite generation achieves higher coverage than random generation, which
again supports our claim. Overall, we can answer our first research question as
follows:

Summary (R: Whole-suite test generation achieves at least as high coverage
as random test generation. Depending on the project it achieves moderate to
strongly higher coverage.

4.4 RQ2: Influence of Type Information

To answer RQ2| we compare the coverage values between the configurations with
and without type annotations, again using the per-module Ay, effect sizes on the
coverage values. This time, we show the effect of type information for whole-suite
generation in Fig. [da] and for random generation in Fig. @b} For whole-suite
generation, we observe a large positive effect on some modules, and barely any
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Figure4: Effect sizes for type influences

effect for other modules when type information is incorporated; we report an
average Ay, value of 0.578 in favour of type information. For random generation,
we note similar effects, except for the pypara project (Au = 0.411, p—value =
0.009 37); inspecting the pypara source code reveals that it uses abstract-class
types as type annotations. PYNGUIN tries to instantiate the abstract class, which
fails, and is thus not able to generate method inputs for large parts of the code
because it cannot find an instantiable subtype. Overall, however, we report an
average Aj, value of 0.554 in favour of random generation with type information.

The box plots in Fig. [f] indicate similar conclusions for both whole-suite
and random testing: the availability of type information is beneficial for some
projects while its effect is negligible for other projects. The docstring_parser
project, for example, requires their own custom types as parameter values for
many methods. Without type information, PYNGUIN has to randomly choose
types from all available types, with a low probability of choosing the correct
one, whereas with available type information it can directly generate an object
of correct type. Another effect comes in place for the python-string-utils
projects: most of its methods only require primitive input types but very specific
input values. PYNGUIN utilises a simple static constant seeding heuristic for
input-value generation. Due to many values in the constant pool the chance of
picking the correct value is smaller when not knowing the requested type, thus
leading to lower coverage without type information.

On the other hand, projects such as flutes require iterables and callables as
parameters in many cases or need special treatment of their methods to execute
them properly (see coroutines in async_btree, for example). PYNGUIN currently
lacks support to generate these required types, which prevents larger effects but
does not limit the general approach. Thus, the type information cannot be used
effectively, which results in negligible effects between the compared configurations.
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The line plot in Fig [3]shows the average coverage per evaluated configuration
over the available time for test generation. It shows that both for whole-suite
and random generation the configuration that incorporates type information
yields higher coverage values over the full runtime of the generation algorithms,
compared to ignoring type information. This again supports our claim that type
information is beneficial when generating unit tests for Python programs. Overall,
we therefore conclude for our second research question:

Summary (R@: Incorporating type information supports the test generation
algorithms and allows them to cover larger parts of the code. The strength of
this effect, however, largely depends on the SUT. Projects that require specific
types from a large pool of potential types benefit more, and thus achieve larger
effect sizes, than projects only utilising simple types.

5 Related Work

Closest to our work is whole-suite test generation in EVOSUITE [9] and feedback-
directed random test generation in RANDOOP [15|. Both of these approaches
target test generation for Java, a statically typed language, whereas our work
adapts these approaches to Python.

To the best of our knowledge, little has been done in the area of automated
test generation for dynamically typed languages. Approaches such as SYmJS [12]
or JSEFT [14] target specific properties of JavaScript web applications, such as
the browser’s DOM or the event system. Feedback-directed random testing has
also been adapted to web applications with ARTEMIS [3]|. Recent work proposes
LAMBDATESTER [1§], a test generator that specifically addresses the generation
of higher-order functions in dynamic languages. Our approach, in contrast, is not
limited to specific application domains.

For automated generation of unit tests for Python we are only aware of
AUGERﬁ; it generates test cases from recorded SUT executions, while our approach
does the generation automatically.

6 Conclusions

In this paper we presented PYNGUIN, an automated unit test generation frame-
work for Python that is available as an open source tool, and showed that
PYNGUIN is able to emit unit tests for Python that cover large parts of existing
code bases. PYNGUIN provides a whole-suite and a random test generation ap-
proach, which we empirically evaluated on ten open source Python projects. Our
results confirm previous findings from the Java world that a whole-suite approach
can outperform a random approach in terms of coverage. We further showed that
the availability of type information has an impact on the test generation quality.
Our investigations revealed a range of technical challenges for automated test

8 https://github.com/laffra/auger, accessed 2020-07-25.
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generation, which provide ample opportunities for further research, for example,
the integration of further test-generation algorithms, such as (Dyna)MOSA |[16],
the generation of assertions, or the integration of type inference approaches.
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