Skip to main content

Analysis of Multi-class Classification of EEG Signals Using Deep Learning

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2020)

Abstract

After promising results of deep learning in numerous fields, researchers have started exploring Electroencephalography (EEG) data for human behaviour and emotion recognition tasks that have a wide range of practical applications. But it has been a huge challenge to study EEG data collected in a non-invasive manner due to its heterogeneity, vulnerability to various noise signals and variant nature to different subjects and mental states. Though several methods have been applied to classify EEG data for the aforementioned tasks, multi-class classification like digit recognition, using this type of data is yet to show satisfactory results. In this paper we have tried to address these issues using different data representation and modelling techniques for capturing as much information as possible for the specific task of digit recognition, paving the way for Brain Computer Interfacing (BCI). A public dataset collected using the MUSE headband with four electrodes (TP9, AF7, AF8, TP10) has been used for this work of categorising digits (0–9). Popular deep learning methodologies like CNN (Convolutional Neural Network) model on DWT (Discrete Wavelet Transform) scalogram, CNN model on connectivity matrix (mutual information of time series against another), MLP (Multilayer Perceptron) model on extracted statistical features from EEG signals and 1D CNN on time domain EEG signals have been well experimented with in this study. Additionally, methodologies like SVC (Support Vector Classifier), Random Forest and AdaBoost on extracted features have also been showcased. Nevertheless, the study provides an insight in choosing the best suited methodology for multi-class classification of EEG signals like digit recognition for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murugappan, M., et al.: Time-frequency analysis of EEG signals for human emotion detection. In: Abu Osman, N.A., Ibrahim, F., Wan Abas, W.A.B., Abdul Rahman, H.S., Ting, H.N. (eds.) 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, vol. 21, pp. 262–265. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69139-6_68

  2. Mohammadi, Z., Frounchi, J., Amiri, M.: Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 28, 1985–1990 (2017)

    Article  Google Scholar 

  3. Li, Y., Zheng, W.M., Cui, Z., et al.: EEG emotion recognition based on graph regularized sparse linear regression. Neural Process. Lett. 1, 1–17 (2018)

    Google Scholar 

  4. Yang, Y., Wu, Q.M.J., Zheng, W.L., et al.: EEG-based emotion recognition using hierarchical network with sub-network nodes. IEEE Trans. Cogn. Dev. Syst. 10, 408–419 (2018)

    Article  Google Scholar 

  5. Neuper, C., et al.: Motor imagery and EEG-based control of spelling devices and neuroprostheses. Progress Brain Res. 159, 393–409 (2006)

    Google Scholar 

  6. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  7. Van Loan, C.: Computational frameworks for the fast Fourier transform, vol. 10. Siam (1992)

    Google Scholar 

  8. Subasi, A., Ismail Gursoy, M.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Google Scholar 

  9. Liaw, A., Wiener, M.: Classification and regression by random Forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Sarle, W.S.: Neural networks and statistical models (1994)

    Google Scholar 

  12. Acharya, U.R., et al.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)

    Google Scholar 

  13. Chen, H., Song, Y., Li, X.: A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 356, 83–96 (2019)

    Article  Google Scholar 

  14. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  15. Pattnaik S.: DWT-based feature extraction and classification for motor imaginary EEG signals. Paper presented at: 2016 International Conference on Systems in Medicine and Biology (ICSMB), 4–7 January, Kharagpur, India (2016)

    Google Scholar 

  16. Bird, J.J., et al.: A deep evolutionary approach to bioinspired classifier optimisation for brain-machine interaction. Complexity (2019)

    Google Scholar 

  17. Jolly, B.L.K., Aggrawal, P., Nath, S.S., Gupta, V., Grover, M.S., Shah, R.R.: Universal EEG encoder for learning diverse intelligent tasks. In: 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 213–218. IEEE, September 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipayan Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, D., Chowdhury, T., Pal, U. (2020). Analysis of Multi-class Classification of EEG Signals Using Deep Learning. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics