Skip to main content

Spatio-Temporal Stability Analysis in Satellite Image Times Series

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12068))

Abstract

Satellite Image Time Series (SITS) provide valuable information for the study of the Earth’s surface. In particular, this information may improve the comprehension, the understanding and the mapping of many phenomenons such as earthquake monitoring, urban sprawling or agricultural practices. In this article, we propose a method to define new spatio-temporal features from SITS based on the measure of the temporal stability. The proposed method is based on a compression algorithm named Run Length Encoding leading to a novel image representation from which stability features can be measured. Such features can then be used in several applications such as SITS summarizing, to make easier the interpretation of such a data-cube, or the classification of spatio-temporal patterns. The preliminary results obtained from a series of 50 Sentinel-2 optical images highlight the interest of our approach in a remote sensing application.

The authors thank the ANR for supporting this work – Grant ANR-17-CE23-0015.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://theia.cnes.fr/.

  2. 2.

    https://land.copernicus.eu/.

References

  1. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z

    Article  Google Scholar 

  2. Andres, L., Salas, W., Skole, D.: Fourier analysis of multi-temporal AVHRR data applied to a land cover classification. IJRS 15(5), 1115–1121 (1994)

    Google Scholar 

  3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  4. Bruzzone, L., Prieto, D.: Automatic analysis of the difference image for unsupervised change detection. IEEE TGRS 38(3), 1171–1182 (2000)

    Google Scholar 

  5. Chelali, M., Kurtz, C., Puissant, A., Vincent, N.: Urban land cover analysis from satellite image time series based on temporal stability. In: Proceedings of the JURSE (2019)

    Google Scholar 

  6. Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E.: Digital change detection methods in ecosystem monitoring: a review. IJRS 25(9), 1565–1596 (2004)

    Google Scholar 

  7. Di Mauro, N., Vergari, A., Basile, T.M.A., Ventola, F.G., Esposito, F.: End-to-end learning of deep spatio-temporal representations for satellite image time series classification. In: Proceedings of the DC@PKDD/ECML, pp. 1–8 (2017)

    Google Scholar 

  8. Golomb, S.W.: Run-length encodings. IEEE TIF 12, 399–401 (1966)

    MATH  Google Scholar 

  9. Huang, B., et al.: Large-scale semantic classification: outcome of the first year of inria aerial image labeling benchmark. In: Proceedings of the IGARSS, pp. 6947–6950 (2018)

    Google Scholar 

  10. Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P.: Land cover classification via multitemporal spatial data by deep recurrent neural networks. IEEE GRSL 14(10), 1685–1689 (2017)

    Google Scholar 

  11. Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., Rodes, I.: Operational high resolution land cover map production at the country scale using satellite image time series. RS 9(1), 95–108 (2017)

    Google Scholar 

  12. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  Google Scholar 

  13. Jensen, J.R.: Urban change detection mapping using Landsat digital data. CGIS 8(21), 127–147 (1981)

    Google Scholar 

  14. Johnson, R., Kasischke, E.: Change vector analysis: a technique for the multispectral monitoring of land cover and condition. IJRS 19(16), 411–426 (1998)

    Google Scholar 

  15. Julea, A., et al.: Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns. IEEE TGRS 49(4), 1417–1430 (2011)

    Google Scholar 

  16. Millward, A.A., Piwowar, J.M., Howarth, P.J.: Time-series analysis of medium-resolution, multisensor satellite data for identifying landscape change. PERS 72(6), 653–663 (2006)

    Google Scholar 

  17. Nielsen, A.A., Conradsen, K., Simpson, J.J.: Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. RSE 64(1), 1–19 (1998)

    Google Scholar 

  18. Pelletier, C., Webb, G., Petitjean, F.: Temporal convolutional neural network for the classification of satellite image time series. RS 11(5), 523–534 (2019)

    Google Scholar 

  19. Petitjean, F., Inglada, J., Gançarski, P.: Satellite image time series analysis under time warping. IEEE TGRS 50(8), 3081–3095 (2012)

    Google Scholar 

  20. Ratanamahatana, C., Keogh, E., Bagnall, A.J., Lonardi, S.: A novel bit level time series representation with implication of similarity search and clustering. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 771–777. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_90

    Chapter  Google Scholar 

  21. Ravikumar, P., Devi, V.S.: Weighted feature-based classification of time series data. In: Proceedings of the CIDM, pp. 222–228 (2014)

    Google Scholar 

  22. Russwurm, M., Korner, M.: Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images. In: Proceedings of the EarthVision@CVPR, pp. 1496–1504 (2017)

    Google Scholar 

  23. Senf, C., Leitao, P., Pflugmacher, D., Van der Linden, S., Hostert, P.: Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. RSE 156, 527–536 (2015)

    Google Scholar 

  24. Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D.: Detecting trend and seasonal changes in satellite image time series. RSE 114(1), 106–115 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Chelali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chelali, M., Kurtz, C., Puissant, A., Vincent, N. (2020). Spatio-Temporal Stability Analysis in Satellite Image Times Series. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics