Skip to main content

An Integrated Deep Architecture for Lesion Detection in Breast MRI

  • Conference paper
  • First Online:
Book cover Pattern Recognition and Artificial Intelligence (ICPRAI 2020)

Abstract

Complex nature of medical images and tedious process of data exploration calls for the development of Computer Aided Detection (CADe) methods to ease the process of lesion detection. Recent deep learning-based object detectors from computer vision are adapted to the creation of CADe lesion detectors. This research starts with state-of-the-art object detectors, namely Faster R-CNN, YOLO v2 and Grad-CAM, to determine the location of lesions in Magnetic Resonance Images of breast. A series of experiments are conducted to find the best set up for maximizing the Average Precision (AP) of each method. Consequently, AP values of 0.6993 and 0.7651 are obtained for Faster R-CNN and YOLO v2 respectively. Taking into consideration the pros and cons of each method, we propose different integration architectures in order to overcome the shortcomings of each algorithm, hence enhancing the overall lesion detection performance. The integrated architectures succeed to obtain an AP value up to 0.8097 while providing explainable reasoning that is essential for medical CADe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehman, C.D., et al.: BREAST imaging: national performance benchmarks for modern screening digital mammography Lehman et al. Radiology 283(1), 49–58 (2017)

    Article  Google Scholar 

  2. Meyer, P., Noblet, V., Mazzara, C., Lallement, A.: Survey on deep learning for radiotherapy. Comput. Biol. Med. 98(May), 126–146 (2018)

    Article  Google Scholar 

  3. Mehranian, A., Arabi, H., Zaidi, H.: Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med. Phys. 43(3), 1130–1155 (2016)

    Article  Google Scholar 

  4. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4, 100004 (2019)

    Google Scholar 

  5. Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  6. Han, S., et al.: A deep learning framework for supporting the classification of breast lesions in ultrasound images. Phys. Med. Biol. 62(19), 7714–7728 (2017)

    Article  Google Scholar 

  7. Rana, S.P., et al.: Machine learning approaches for automated lesion detection in microwave breast imaging clinical data. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  8. Ha, R., et al.: Prior to initiation of chemotherapy, can we predict breast tumor response? deep learning convolutional neural networks approach using a breast mri tumor dataset. J. Digit. Imaging 32(5), 693–701 (2018). https://doi.org/10.1007/s10278-018-0144-1

    Article  Google Scholar 

  9. Ha, R., et al.: Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J. Digit. Imaging 32(2), 276–282 (2019). https://doi.org/10.1007/s10278-019-00179-2

    Article  Google Scholar 

  10. Herent, P., et al.: Detection and characterization of MRI breast lesions using deep learning. Diagn. Interv. Imaging 100(4), 219–225 (2019)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016, pp. 770–778 (2016)

    Google Scholar 

  12. Amit, G., Ben-Ari, R., Hadad, O., Monovich, E., Granot, N., Hashoul, S.: Classification of breast MRI lesions using small-size training sets: comparison of deep learning approaches. In: Proceedings, Medical Imaging 2017: Computer-Aided Diagnosis, vol. 101234, p. 101341H (2017)

    Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, pp. 1–14 (2015)

    Google Scholar 

  14. Whitney, H., Li, H., Yu, J., Liu, P., Giger, M.L.: Comparison of breast MRI tumor classification using radiomics, transfer learning from deep convolutional neural networks, and fusion methods, pp. 1–15 (2019)

    Google Scholar 

  15. Al-masni, M.A., et al.: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018)

    Article  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 779–788 (2016)

    Google Scholar 

  17. Chiao, J.Y., Chen, K.Y., Liao, K.Y.K., Hsieh, P.H., Zhang, G., Huang, T.C.: Detection and classification the breast tumors using mask R-CNN on sonograms. Med. (Baltimore) 98(19), e15200 (2019)

    Article  Google Scholar 

  18. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 2980–2988 (2017)

    Google Scholar 

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  20. Fan, M., Li, Y., Zheng, S., Peng, W., Tang, W., Li, L.: Computer-aided detection of mass in digital breast tomosynthesis using a faster region-based convolutional neural network. Methods 166, 103–111 (2019)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, January 2017, pp. 6517–6525 (2017)

    Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  23. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  24. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Crown

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rouhafzay, G., Li, Y., Guan, H., Shu, C., Goubran, R., Xi, P. (2020). An Integrated Deep Architecture for Lesion Detection in Breast MRI. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics