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Abstract. Progress in the biomedical field through the use of deep
learning is hindered by the lack of interpretability of the models. In
this paper, we study the RETAIN architecture for the forecasting of
future glucose values for diabetic people. Thanks to its two-level atten-
tion mechanism, the RETAIN model is interpretable while remaining as
efficient as standard neural networks.

We evaluate the model on a real-world type-2 diabetic population and
we compare it to a random forest model and a LSTM-based recurrent
neural network. Our results show that the RETAIN model outperforms
the former and equals the latter on common accuracy metrics and clinical
acceptability metrics, thereby proving its legitimacy in the context of glu-
cose level forecasting. Furthermore, we propose tools to take advantage
of the RETAIN interpretable nature. As informative for the patients as
for the practitioners, it can enhance the understanding of the predictions
made by the model and improve the design of future glucose predictive
models.

Keywords: Deep Learning · Glucose Prediction · Diabetes · Neural Net-
works · Attention · Interpretability.

1 Introduction

Diabetes is undoubtedly one of the major diseases of the modern world as it has
been inputed a total of 1.5 million deaths in 2012 [16]. The every day challenge
faced by diabetic people is the regulation of their blood glucose level which is
troubled by either the non-production of insulin (type-1 diabetes) or the increas-
ing body resistance to its action (type-2 diabetes). Diabetic people are at risk of
facing short terms complications (e.g., coma, death) due to their glycemia falling
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too low (hypoglycemia) and also long-term complications (e.g., cardiovascular
diseases, blindness) when it gets to high (hyperglycemia).

To help the patients coping with their disease, a lot of technological efforts
have been made in the recent years. For instance, by enabling the diabetic patient
to forgo the use of lancets to get his or her glucose level, continuous glucose
monitoring (CGM) devices (e.g., FreeStyle Libre [10]) are getting more and more
common. Besides, we are witnessing the rise of coaching applications specifically
made for diabetic people (e.g., mySugr [12]). From a research perspective, current
endeavors are focused towards the building of glucose predictive models. Using
past glucose values, carbohydrate (CHO) intakes, insulin infusions, and more,
the models forecast the future glucose values at horizons varying from 30 minutes
(short-term) to 120 minutes (long-term) [11].

Thanks to the increasing availability of data and the access to more comput-
ing power, the glucose predictive models are shifting from rather simple models
(e.g., autoregressive models [13]), to more complex algorithms from the machine
learning and deep learning field. Daskalaki et al. have demonstrated the supe-
riority of feed-forward neural networks over the autoregressive models in the
context of short-term glucose forecasting [2]. Georga et al. explored the usability
of extreme learning machines for short-term glucose prediction as well [5]. Re-
current neural networks have recently generated a lot of interest because of their
temporal nature, making them particularily suitable for the task of predicting
future glucose values [3,9]. As time-series can be seen as one-dimension images,
convolutional neural networks, which are very popular in the image recogni-
tion community, have also been tried out for the forecasting of future glucose
values [7].

Even though deep models can be effective for the task of glucose prediction,
they have a sizable downside: the deeper the model, the more difficult it is to
understand its behavior. This is especially an issue for biomedical applications for
which it is important to be able to interpret the models in order to understand
why a prediction is being made. To address this issue, Georga et al. showed
that Random Forests (RF), while being highly interpretable, can achieve good
performances for the task of glucose prediction [4].

Recently, Choi et al. proposed a neural network, called RETAIN, specifically
designed for healthcare applications dealing with temporal inputs. Featuring a
two-level attention mechanism, the model is meant to be as performant as stan-
dard neural networks while being interpretable. This property is highly valuable
for the prediction of future glucose values. On one hand, it would help the prac-
titioner design better and safer models by providing a better error analysis tool.
On the other hand, for the patient, it would help him or her understand his or
her desease better.

In this work, we study the use of the RETAIN architecture for the challenging
task of the forecast of future glucose values for diabetic people. In particular,
we adapt its interpretability feature to regression problems and propose several
analysis and visualization tools to interpret the predictions made by the model.
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The rest of the paper is structured as follows. First, we describe the RE-
TAIN architecture and how the predictions are interpreted from it. Then, we
describe the overall experimental methodology. Finally, we provide the results
and analysis of the experiments before concluding.

2 RETAIN

This section presents the RETAIN architecture that has been previously intro-
duced in [1] and its interpretation for time-series forecasting, and in particular
for glucose prediction.

2.1 Architecture
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Fig. 1: Graphical overview of the RETAIN model. Step 1: The input signals are
transformed into embeddings. Step 2: Time-level attention weights are computed from
the embeddings. Step 3: Variable-level attention weights are also computed from the
embeddings. Step 4: Using the attention weights, the context vector is computed.
Step 5: The prediction is made from the context vector.

Most of the efficiency of the RETAIN model comes from its two levels of
attention: the time-level attention (also called visit-level attention [1]), and the
variable-level attention. The general attention mechanism comes from the natu-
ral language processing field where it enables the model to understand relation-
ships between words in a sentence [15]. Here, when dealing with temporal inputs
(e.g., time-series, events), while the time-level attention makes the network fo-
cus on specific time-steps, the variable-level attention enphasizes specific input
within the time-steps.

The predictions of the RETAIN model are made following five different steps
for which Figure 1 provides a graphical representation. In the following, t refers
to the current time-step the prediction is made, r to the number of different
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input variables, H to the size of the history (the number of past values for every
input variable), PH to the prediction horizon, the subscript i ∈ [t−H, t] to the
i -th time-step, and the subscript j ∈ [1, r] to the j-th input variable.

– Step 1: Each time-step input vector xi is linearly transformed into a learn-
able embedding vi following: vi = W embxi.

– Step 2: These embeddings are given as inputs to a recurrent neural network,
RNNα, which outputs the time-level attention weights αi (see [1] for more
details).

– Step 3: Similarly, the embeddings are fed into a second recurrent neural
network, RNNβ , which computes the variable-level attention weights βi
(see [1] for more details).

– Step 4: Using both attention weights, the context vector ct is computed
following: ct =

∑t
i=t−H αiβi � vi.

– Step 5: The predictions of the model are made by linearly transforming the
context vectors: ˆyt+PH = Wct + b.

The only difference between our architecture and the original one is that we
do not compute the attention weights in reverse time-order (Steps 2 and 3) [1],
but rather in forward order, as the latter yielded better performances for our
application.

2.2 Interpretation

In their original paper, the authors of RETAIN propose a way to interpret the
outputs of the RETAIN model in the context of multiclass classification. We
propose here an adaptation of the methodology to regression problems.

By going through the different operations made in the model, we can express
the prediction ŷt+PH in this form:

ŷt+PH =

t∑

i=t−H

r∑

j=1

xi,jαiW (βi �W emb[:, j]) + b (1)

We can then express the contribution ω(ŷt+PH , xi,j) of the xi,j input feature
on the prediction ŷt+PH as follows:

ω(ŷt+PH , xi,j) = αiW (βi �W emb[:, j]) xi,j (2)

While the contributions in this form are useful to analyze an individual sam-
ple, they are not very practical if we want to perform further analysis and statis-
tics. Instead, we propose to look at the absolute normalized contribution values
ωAN (ŷt+PH , xi,j):

ωAN (ŷt+PH , xi,j) =
|ω(ŷt+PH , xi,j)|∑t

i=t−H
∑r
j=1 |ω(ŷt+PH , xi,j)|

(3)

Taking the absolute values makes the computation of the mean contribution
accross the samples more representative of the overall contributions, preventing
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positive and negative contributions from canceling each other. Normalizing the
contributions makes the contributions independent from the prediction value
itself, enabling a better comparison between samples.

3 Methods

3.1 Experimental Data

In this study, we use the IDIAB dataset whose collection has been approved
by the french ethical comittee (ID RCB 2018-A00312-53). It is made of data
coming from 5 type-2 diabetic patients (4F/1M, age 58.8 ± 8.28 years old, BMI
30.76 ± 5.14 kg/m2, HbA1c 6.8 ± 0.71 %) that have been monitored for 31.8 ±
1.17 days in free-living conditions. Whereas their glucose level (in mg/dL) was
recorded through the use of the FreeStyle Libre continuous glucose monitoring
device, data related to CHO intakes (in g) and insulin (in units) infusions were
manually reported through the mySugr (mySugr GmbH) smartphone coaching
app for diabetes.

3.2 Models

In this study, we build global glucose predictive models. Whereas personalized
glucode predictive models are often more accurate, global models have the ad-
vantage of being easier to train by avoiding overfitting thanks to more training
data.

We describe here the preprocessing and training steps of the different models
used in this study.

3.3 Data Preprocessing

After splitting the patients into four training patients and one testing patient,
we have splitted each training patient’s data into a training set and a validation
set following a 75%/25% distribution.

To predict the future glucose values at an horizon of 30 minutes, the models
are given as inputs the histories of glucose values, insulin infusions, and CHO
intakes of the past 3 hours. For every patient, these inputs are standardized (zero
mean and unit variance) w.r.t their respective training set.

3.4 Model Training

The Random Forest (RF) model [14] is one of the two baseline models used in
this study. Its main strength is that it provides generally good performances
while being easily interpretable. Here, a forest of size 100 is fitted using the
mean-squared error (MSE) criterion. The minimum number of samples per leaf
has been set to 25 to reduce the overfitting of the model to the training set.
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Our second baseline, the LSTM model, has been implemented with an ar-
chitecture that matches the computational complexity of the RETAIN model
described below. In particular, every time-step input variables are embedded
into a learnable vector of size 64. These embeddings are then given to a 2-layer
LSTM model with 128 units per layer. The latter has been trained to minimize
the MSE loss function with the Adam optimizer (learning rate of 10−3, mini-
batch size of 50). To prevent the overfitting of the network to the training set,
the early stopping methodology (patience of 25) has been used.

As for the LSTM model, the RETAIN model has an embedding size of 64.
Both RNNα and RNNβ are made of one layer of 128 LSTM units. Similarily,
the Adam optimizer (same learning rate and mini-batch size) with the early
stopping methodology was used to fit the model.

All the hyperparameters have been optimized by grid search on the validation
set on a subspace delimited by manual search.

3.5 Evaluation

The models have been evaluated with a 4-fold cross-validation on the training
patients followed by a leave-one-(patient)-out cross-validation.

Four different metrics have been used: the Root-Mean-Squared Error (RMSE),
the Mean Percentage Absolute Error (MAPE), the Time Lag (TL), and the Con-
tinuous Glucose-Error Grid Analysis (CG-EGA).

Both the RMSE and MAPE metrics give a measure of the accuracy of the
prediction. The TL metric provides an estimate of the time gained by doing
the prediction and is computed as the time-shift (in minutes) that maximizes
the correlation between the true and the predicted glucose values. Finally, the
CG-EGA measures the clinical acceptability of the predictions [6]. By analyzing
both the prediction accuracy and the accuracy of the variation between two con-
secutive predictions, the CG-EGA classifies the prediction either as an accurate
prediction (AP), a benign error (BE), or an erroneous prediction (EP). For a
model to be clinically acceptable, it needs to have high AP and low EP rates.

4 Results & Discussion

4.1 Experimental Results

The performances of the three models are shown in Table 1 and Table 2. With
an average deterioration of 1.4% in RMSE/MAPE/TL when compared to the
LSTM model, the RETAIN model displays a comparable prediction accuracy.
Its clinical acceptability is also very similar to the LSTM model.

When compared to the RF model, the RETAIN model shows an improve-
ment of 8.5%, 8.4%, 20.7% in the RMSE, MAPE, and TL metrics respectively.
It also has a better clinical acceptability with a lower EP rate (-9.7%) which
comes at the cost of a slightly lower AP rate (-3.3% of the remaining room for
improvement).

Overall, these results are showing that the RETAIN model is a legitimate
model for the task of glucose prediction.
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Table 1: Performances of the models with mean ± standard deviation, averaged on
the population.

Model RMSE MAPE TL

RF 19.23 ± 6.73 9.37 ± 1.58 15.31 ± 3.38

LSTM 17.52 ± 5.52 8.35 ± 1.30 12.01 ± 2.36

RETAIN 17.60 ± 4.90 8.58 ± 0.84 12.14 ± 2.53

Table 2: Clinical acceptability of the models with mean ± standard deviation, averaged
on the population.

Model
CG-EGA

AP BE EP

RF 86.00 ± 4.37 10.79 ± 3.59 3.21 ± 0.84

LSTM 85.67 ± 3.28 11.46 ± 2.47 2.87 ± 0.95

RETAIN 85.54 ± 5.41 11.56 ± 4.50 2.90 ± 0.95

4.2 Interpreting the RETAIN Model

The real strength of the RETAIN model, however, lies in its interpretability. We
propose here several different visualization tools for the analysis of the behavior
of the RETAIN model. To ease the reading, we will refer to the contribution as
the absolute normalized contribution, presented in Section 2.2.

First, by looking at the individual maximum contribution of the input vari-
ables, we can see if each of them has ever contributed significantly to the pre-
diction. Figure 2 plots the maximum contribution of the model inputs related
to the 3-hour histories of glucose values, insulin infusions, and CHO intakes. We
can see that the the older an input value is, the less contribution it has. The
decrease in the contribution is faster for the insulin and CHO signals (close to
zero after 30 minutes) than for the glucose signal (close to zero after 60 minutes).
This suggests that it is not usefull in this context to use histories that are longer
than one hour. Reducing the number of past values inputed to the model should
increase the performances by making it harder to overfit and should reduce the
training time. Such an analysis is not possible with a standard LSTM model.

From a different perspective, we can look at the behavior of the model when
an event occurs. Figure 3 depicts the behavior of the model following the oc-
curence of two different events: insulin infusions and CHO intakes. We can com-
pare these plots to the mean contribution when no event has occured in the last
hour with Figure 4.

When either one of the events occurs, we can see that the glucose value
that has the most importance is not the current glucose value, but the previous
one (which is the value 5 minutes before the event). This specific value keeps
a relative high importance as the time moves on. This shows that, when an
event occurs, the model uses the last glucose value before the event as a value
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Fig. 2: Maximum absolute normalized contribution of the input signals (history of
glucose, insulin, and CHO).

of reference. On the other hand, for both insulin and CHO signals, when their
respective event occurs, the contribution of the value of the event is relatively
high for the next 20 minutes. However, after this time, the contribution of the
event is close to zero and the mean contribution profile becomes similar to the
one for which no event has occured in the past hour, depicted by Figure 4.

5 Conclusion

In this study, we have presented the application of the RETAIN model proposed
by Choi et al. [1] to the challenging task of 30-minutes ahead-of-time glucose pre-
diction for diabetic people. Using a two-level attention mechanism, the RETAIN
model is able to produce interpretable predictions, which is highly valuable in
the context of a biomedical field.

We have evaluated the model on a type-2 diabetic population of 5 patients
and compared it against a Random Forest and a LSTM-based recurrent neural
network. By being interpetable while respectively equalling and outperforming
the LSTM and the RF models, we show that the RETAIN model is very promis-
ing.

In the future, we plan to extend the study to another dataset, namely the
Ohio T1DM dataset [8]. In particular, this dataset comprises 6 type-1 diabetic
patients with similar data. Also, thanks to the interpretability of the RETAIN
model, we plan to explore variants of its architecture and input data (e.g., phys-
ical activity measures).
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(a) Event: insulin infusion

0 20 40
0

0.2

0.4

0.6

M
ea
n
ab

so
lu
te

n
or
m
al
iz
ed

co
n
tr
ib
u
ti
on

time-step = 0

0 20 40

time-step = 5

0 20 40

time-step = 10

0 20 40

Recent history [min]

time-step = 15

0 20 40

time-step = 20

0 20 40

time-step = 25

0 20 40

time-step = 30

glucose
insulin
CHO
event

(b) Event: CHO intake

Fig. 3: Mean evolution through time of the absolute normalized contribution of the
input signals (history of glucose, insulin, and CHO) after the occurence of an event:
Figure 3a, insulin infusion; and Figure 3b, CHO intake.
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Fig. 4: Mean absolute normalized contribution of the input signals when no event
(CHO intake or insulin infusion) occured in the last hour.



10 M. De Bois et al.

Acknowledgment

We would like to thank the diabetes health network Revesdiab and Dr. Sylvie
JOANNIDIS for their help in building the IDIAB dataset used in this study.

References

1. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: An
interpretable predictive model for healthcare using reverse time attention mech-
anism. In: Advances in Neural Information Processing Systems. pp. 3504–3512
(2016)

2. Daskalaki, E., Prountzou, A., Diem, P., Mougiakakou, S.G.: Real-time adaptive
models for the personalized prediction of glycemic profile in type 1 diabetes pa-
tients. Diabetes technology & therapeutics 14(2), 168–174 (2012)

3. De Bois, M., El Yacoubi, M., Ammi, M.: Prediction-coherent lstm-based recurrent
neural network for safer glucose predictions in diabetic people (accepted at ICONIP
2019)

4. Georga, E.I., Protopappas, V.C., Polyzos, D., Fotiadis, D.I.: A predictive model of
subcutaneous glucose concentration in type 1 diabetes based on random forests.
In: 2012 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. pp. 2889–2892. IEEE (2012)

5. Georga, E.I., Protopappas, V.C., Polyzos, D., Fotiadis, D.I.: Online prediction of
glucose concentration in type 1 diabetes using extreme learning machines. In: Engi-
neering in Medicine and Biology Society (EMBC), 2015 37th Annual International
Conference of the IEEE. pp. 3262–3265. IEEE (2015)

6. Kovatchev, B.P., Gonder-Frederick, L.A., Cox, D.J., Clarke, W.L.: Evaluating the
accuracy of continuous glucose-monitoring sensors: continuous glucose–error grid
analysis illustrated by therasense freestyle navigator data. Diabetes Care 27(8),
1922–1928 (2004)

7. Li, K., Daniels, J., Liu, C., Herrero-Vinas, P., Georgiou, P.: Convolutional recurrent
neural networks for glucose prediction. IEEE Journal of Biomedical and Health
Informatics (2019)

8. Marling, C., Bunescu, R.: The ohiot1dm dataset for blood glucose level prediction.
In: The 3rd International Workshop on Knowledge Discovery in Healthcare Data,
Stockholm, Sweden (2018)

9. Mirshekarian, S., Bunescu, R., Marling, C., Schwartz, F.: Using lstms to learn
physiological models of blood glucose behavior. In: Engineering in Medicine and
Biology Society (EMBC), 2017 39th Annual International Conference of the IEEE.
pp. 2887–2891. IEEE (2017)
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