Skip to main content

A Survey on Peripheral Blood Smear Analysis Using Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12068))

Abstract

Peripheral Blood Smear (PBS) analysis is a routine test carried out in specialized medical laboratories by specialists to assess some aspects of health status that are measured and assessed through blood. PBS analysis is prone to human errors and the usage of computer-based analysis can greatly enhance this process in terms of accuracy and cost. Despite the challenges, Deep Learning neural networks have shown impressive performance in this context. In this study the recent contributions are summarized along with the main challenges and future directions in this context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmed, A.N., Yiğit, A., Isik, Z., Alpkocak, A.: Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics 9(3), 104 (2019). https://doi.org/10.3390/diagnostics9030104

  2. Alam, M.M., Islam, M.T.: Machine learning approach of automatic identification and counting of blood cells. Healthcare Technol. Lett. 6(4), 103–108 (2019). https://doi.org/10.1049/htl.2018.5098

    Article  Google Scholar 

  3. Aliyu, H.A., Sudirman, R., Abdul Razak, M.A., Abd Wahab, M.A.: Red blood cell classification: deep learning architecture versus support vector machine. In: 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Malaysia, pp. 142–147, July 2018. https://doi.org/10.1109/ICBAPS.2018.8527398

  4. Aliyu, H.A., Sudirman, R., Abdul Razak, M.A., Abd Wahab, M.A.: Red blood cell classification: deep learning architecture versus support vector machine. In: 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Malaysia, pp. 142–147, July 2018. https://doi.org/10.1109/ICBAPS.2018.8527398

  5. Arunagiri, V., B, R.: Deep learning approach to detect malaria from microscopic images. Multimedia Tools Appl., 1–21 (2019). https://doi.org/10.1007/s11042-019-7162-y

  6. Bailo, O., Ham, D., Min Shin, Y.: Red blood cell image generation for data augmentation using conditional generative adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, June 2019

    Google Scholar 

  7. Bibin, D.S., Nair, M., Punitha, P.: Malaria parasite detection from peripheral blood smear images using deep belief networks. IEEE Access 5, 9099–9108 (2017). https://doi.org/10.1109/ACCESS.2017.2705642

  8. Delahunt, C.B., et al.: Fully-automated patient-level malaria assessment on field-prepared thin blood film microscopy images, including supplementary information. CoRR abs/1908.01901 (2019). arXiv:1908.01901v1

  9. Elsalamony, H.A.: Detection of anaemia disease in human red blood cells using cell signature, neural networks and SVM. Multimedia Tools Appl. 77(12), 15047–15074 (2018). https://doi.org/10.1007/s11042-017-5088-9

    Article  Google Scholar 

  10. Go, T., Kim, J.H., Byeon, H., Lee, S.J.: Machine learning-based in-line holographic sensing of unstained malaria-infected red blood cells. J. Biophotonics 11(9), e201800101 (2018). https://doi.org/10.1002/jbio.201800101

    Article  Google Scholar 

  11. National Institutes of Health: Nih malaria dataset (2018). https://lhncbc.nlm.nih.gov/publication/pub9932

  12. Hegde, R., Prasad, K., Hebbar, H., Singh, B.M.: Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybernetics Biomed. Eng. 39(2), 382–392 (2019). https://doi.org/10.1016/j.bbe.2019.01.005

    Article  Google Scholar 

  13. Hegde, R., Prasad, K., Hebbar, H., Singh, B.M.: Image processing approach for detection of leukocytes in peripheral blood smears. J. Med. Syst. 43(5) (2019). https://doi.org/10.1007/s10916-019-1219-3

  14. Huang, Q., Li, W., Zhang, B., Li, Q., Tao, R., Lovell, N.H.: Blood cell classification based on hyperspectral imaging with modulated Gabor and CNN. IEEE J. Biomed. Health Inform., 1 (2019). https://doi.org/10.1109/JBHI.2019.2905623

  15. Johnson, J.M., Khoshgoftaar, T.M.: Survey on deep learning with class imbalance. J. Big Data 6(1), 27 (2019). https://doi.org/10.1186/s40537-019-0192-5

    Article  Google Scholar 

  16. Kalkan, S.C., Sahingoz, O.K.: Deep learning based classification of malaria from slide images. In: 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1–4, April 2019. https://doi.org/10.1109/EBBT.2019.8741702

  17. Kumar, R., Singh, S.K., Khamparia, A.: Malaria detection using custom convolutional neural network model on blood smear slide images. In: Luhach, A.K., Jat, D.S., Hawari, K.B.G., Gao, X.-Z., Lingras, P. (eds.) ICAICR 2019. CCIS, vol. 1075, pp. 20–28. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-0108-1_3

    Chapter  Google Scholar 

  18. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017). https://doi.org/10.1109/ACCESS.2017.2696121

    Article  Google Scholar 

  19. Liang, G., Hong, H., Xie, W., Zheng, L.: Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 6, 36188–36197 (2018). https://doi.org/10.1109/ACCESS.2018.2846685

    Article  Google Scholar 

  20. Lin, M., Tang, K., Yao, X.: Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 647–660 (2013). https://doi.org/10.1109/TNNLS.2012.2228231

    Article  Google Scholar 

  21. Liu, Y., Long, F.: Acute lymphoblastic leukemia cells image analysis with deep bagging ensemble learning. bioRxiv (2019). https://doi.org/10.1101/580852

  22. Manescu, P., et al.: Deep learning enhanced extended depth-of-field for thick blood-film malaria high-throughput microscopy. CoRR abs/1906.07496 (2019). arXiv:1903.06056v1

  23. Mundhra, D., Cheluvaraju, B., Rampure, J., Rai Dastidar, T.: Analyzing microscopic images of peripheral blood smear using deep learning. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 178–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_21

    Chapter  Google Scholar 

  24. Pan, W., Dong, Y., Wu, D.: Classification of malaria-infected cells using deep convolutional neural networks, pp. 159–172. IntechOpen, September 2018. https://doi.org/10.5772/intechopen.72426

  25. Prellberg, J., Kramer, O.: Acute lymphoblastic leukemia classification from microscopic images using convolutional neural networks. CoRR abs/1906.09020 (2019)

    Google Scholar 

  26. Purwar, S., Tripathi, R.K., Ranjan, R., Saxena, R.: Detection of microcytic hypochromia using CBC and blood film features extracted from convolution neural network by different classifiers. Multimedia Tools Appl. (2019). https://doi.org/10.1007/s11042-019-07927-0

    Article  Google Scholar 

  27. Qin, F., Gao, N., Peng, Y., Wu, Z., Shen, S., Grudtsin, A.: Fine-grained leukocyte classification with deep residual learning for microscopic images. Comput. Methods Programs Biomed. 162(8), 243–252 (2018). https://doi.org/10.1016/j.cmpb.2018.05.024

    Article  Google Scholar 

  28. Rahman, A., et al.: Improving malaria parasite detection from red blood cell using deep convolutional neural networks. CoRR abs/1907.10418 (2019). arXiv:1907.10418v1

  29. Rajaraman, S., et al.: Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 6(e4568) (2018). https://doi.org/10.7717/peerj.4568

  30. Rajaraman, S., Jaeger, S., Antani, S.K.: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 7(e6977) (2019). https://doi.org/10.7717/peerj.6977

  31. Razzak, M.I., Naz, S.: Microscopic blood smear segmentation and classification using deep contour aware CNN and extreme machine learning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 801–807, July 2017. https://doi.org/10.1109/CVPRW.2017.111

  32. Rodak, B.F., Fritsma, G.A., Doig, K.: Hematology: Clinical Principles and Applications. Elsevier Health Sciences (2007). https://books.google.com/books?id=6sfacydDNsUC

  33. Shafique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 17, 1–7 (2018). https://doi.org/10.1177/1533033818802789

    Article  Google Scholar 

  34. Singla, N., Srivastava, V.: Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size. CoRR abs/1903.06056 (2019). arXiv:1903.06056v1

  35. Thanh, T., Kwon, O.H., Kwon, K.R., Lee, S.H., Kang, K.W.: Blood cell images segmentation using deep learning semantic segmentation. In: 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE), Xian, China, pp. 13–16, December 2018. https://doi.org/10.1109/ICECOME.2018.8644754

  36. Thanh, T., Vununu, C., Atoev, S., Lee, S.H., Kwon, K.R.: Leukemia blood cell image classification using convolutional neural network. Int. J. Comput. Theory Eng. 10(2), 54–58 (2018). https://doi.org/10.7763/IJCTE.2018.V10.1198

    Article  Google Scholar 

  37. Varma, S.L., Chavan, S.S.: Detection of malaria parasite based on thick and thin blood smear images using local binary pattern. In: Iyer, B., Nalbalwar, S.L., Pathak, N.P. (eds.) Computing, Communication and Signal Processing. AISC, vol. 810, pp. 967–975. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1513-8_98

    Chapter  Google Scholar 

  38. Vogado, L.H.S., Veras, R.D.M.S., Andrade, A.R., Araujo, F.H.D.D., Silva, R.R.V., Aires, K.R.T.: Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Campo Grande, Brazil, pp. 367–373, October 2017. https://doi.org/10.1109/SIBGRAPI.2017.55

  39. Vogado, L.H., Veras, R.M., Araujo, F.H., Silva, R.R., Aires, K.R.: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification. Eng. Appl. Artif. Intell. 72(C), 415–422 (2018). https://doi.org/10.1016/j.engappai.2018.04.024

  40. Wang, J.L., Li, A.Y., Huang, M., Ibrahim, A.K., Zhuang, H., Ali, A.M.: Classification of white blood cells with pattern net-fused ensemble of convolutional neural networks (PECNN). In: 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, pp. 325–330, December 2018. https://doi.org/10.1109/ISSPIT.2018.8642630

  41. Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., Yang, S.: Deep learning approach to peripheral leukocyte recognition. PloS One 14(6) (2019). https://doi.org/10.1371/journal.pone.0218808

  42. Wang, X., Xu, T., Zhang, J., Chen, S., Zhang, Y.: SO-YOLO based WBC detection with Fourier ptychographic microscopy. IEEE Access 6, 51566–51576 (2018). https://doi.org/10.1109/ACCESS.2018.2865541

    Article  Google Scholar 

  43. Yang, F., et al.: Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE J. Biomed. Health Inform. 24(5), 1427–1438 (2019). https://doi.org/10.1109/JBHI.2019.2939121

Download references

Acknowledgment

We thank Dr. Mohammad Al-Qudah from the pathology department at Jordan University of Science and Technology for his help in the medical background and for useful discussions about the possible future directions in PBS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiah Al-qudah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-qudah, R., Suen, C.Y. (2020). A Survey on Peripheral Blood Smear Analysis Using Deep Learning. In: Lu, Y., Vincent, N., Yuen, P.C., Zheng, WS., Cheriet, F., Suen, C.Y. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2020. Lecture Notes in Computer Science(), vol 12068. Springer, Cham. https://doi.org/10.1007/978-3-030-59830-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59830-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59829-7

  • Online ISBN: 978-3-030-59830-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics