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Abstract. This paper applies probabilistic model checking techniques
for discrete Markov chains to inference in Bayesian networks. We present
a simple translation from Bayesian networks into tree-like Markov chains
such that inference can be reduced to computing reachability probabil-
ities. Using a prototypical implementation on top of the Storm model
checker, we show that symbolic data structures such as multi-terminal
BDDs (MTBDDs) are very effective to perform inference on large Bayesian
network benchmarks. We compare our result to inference using proba-
bilistic sentential decision diagrams and vtrees, a scalable symbolic tech-
nique in AI inference tools.

1 Introduction

Bayesian networks. Bayesian networks (BNs, for short) are one of the most
prominent class of probabilistic graphical models [32] in AI. They are used
in very different domains, both for knowledge representation and reasoning.
BNs represent conditional dependencies between random variables yielding – if
these dependencies are sparse – compact representations of their joint probabil-
ity distribution. Probabilistic inference is the prime evaluation metric on BNs.
It amounts to compute conditional probabilities. It is computationally hard:
PP-complete [13,14]. A vast amount of inference algorithms exists, both exact
ones (possibly tailored to specific graph structures such as bounded tree-width
graphs), as well as advanced approximate and simulation algorithms. State-of-
the-art symbolic exact inference use different forms of decision diagrams. In par-
ticular, sentential decision diagrams (SDDs for short [44]) and their probabilistic
extension (PSDDs [30]) belong to the prevailing techniques.

Probabilistic model checking. Model checking of Markov chains and non-determ-
inistic extensions thereof is a vibrant field of research since several decades. The
central problem is computing reachability probabilities, i.e., what is the proba-
bility to reach a goal state from a given start state? Algorithms for computing
conditional probabilities have been considered in [5]. Efficient model-checking
algorithms have been developed and tools such as PRISM [33] and storm [20]
have been applied to case studies from several different application areas. Like
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ordinary model checking, the state-space explosion problem is a major practical
obstacle. As for BNs, the use of decision diagrams has attracted a lot of attention
since its first usages in probabilistic model checking [4,2] and improvements are
still being developed, see e.g., [31]. As demonstrated in the QComp 2019 com-
petition, MTBDD-based model checking prevails on various benchmarks [24].

Topic of this paper. The aim of this work is to investigate to what extent off-
the-shelf techniques from probabilistic model checking can be used for exact
probabilistic inference in BNs. We are in particular interested to study the usage
of MTBDD-based symbolic model checking for inference, and to empirically
compare its performance to inference using state-of-the-art decision diagrams
in AI such as SDDs and their probabilistic extension. To that end, we define
a simple mapping from (discrete) BNs into discrete-time Markov chains (MCs)
and relate Bayesian inference to computing reachability probabilities. We report
on an experimental evaluation on BNs of the bnlearn repository varying in size
from small to huge (BN categorization) using a prototypical implementation
on top of the storm model checker. Our experiments show that inference using
MTBDD-based model checking is quite sensitive to the evidence in the inference
query, both in terms of size (i.e., the number of random variables) and depth
(i.e., the ordering). For BNs of small to large size, MTBDD-based symbolic
model checking is competitive to BN-specific symbolic techniques such as PSDDs
whereas for very large and huge BNs, PSDD techniques prevail.

Contributions. Our work aimed to reduce the gap between the area of proba-
bilistic model checking and probabilistic inference. Its main contributions are:

– A simple mapping from Bayesian networks to Markov chains
– A prototypical tool chain to enable model-checking based inference.
– An experimental evaluation to compare off-the-shelf MTBDD-based infer-

ence by model checking to tailored PSDD inference.

Related work. There is a large body of related work on exploiting verification
and/or symbolic data structures to inference. We here concentrate on the most
relevant papers. Deininger et al. [21] is perhaps the closest related work. They ap-
ply PCTL model checking on factored representations of dynamic BNs and com-
pare an MTBDD-based approach using partitioned representations of the tran-
sition probability matrix to monolithic representations. Their experiments show
that quantitative model checking does not significantly benefit from partitioned
representations. Langmead et al. [34,35] employ probabilistic model checking al-
gorithms to perform inference on Dynamic Bayesian Networks. They emphasize
on broadening the queries, using temporal logic as the query language. Holtzen
et al. [25] consider symbolic inference on discrete probabilistic programs. They
generalize efficient inference techniques for BNs that exploit the BN structure
to such programs. The key is to compile a program into a weighted Boolean
formula, and to exploit BDD-based techniques to carry out weighted model
counting on such formulas. The works by Darwiche et al. [15,19,16,11] compile
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BNs into arithmetic circuits (via CNF) and perform inference by mainly differ-
entiating these circuits in linear time in terms of the circuit sizes. This method
is also applicable to relational BNs [12]. Minato et al. [36] propose an approach
for exact inference by compiling BNs directly into multiple linear formulas us-
ing zero-suppressed BDDs. This differs from Darwiche’s approach as it does not
require the intermediate compilation into CNF. Shih et al. [43] propose a sym-
bolic approach to compile BNs into reduced ordered BDDs in order to verify
them against monotonicity and robustness. Sanner and McAllester [40] propose
an affine version of algebraic decision diagrams to compactly represent context-
specific, additive, and multiplicative structures. They proved that the time and
memory footprint of these affine ADDs for inference can be linear in the number
of variables in cases where ADDs are exponential. Batz et al. [6] use deductive
verification to analyse BNs. They show that BNs correspond to a simple form
of probabilistic programs amenable to obtaining closed-form solutions for exact
inference. They exploited this principle to determine the expected time to get
one sample from the BN under rejection sampling. Approximate model check-
ing has been applied to verify dynamic BNs against finite-horizon probabilistic
linear temporal properties [37]. Finally, we mention the works [42,23] that use
exact symbolic inference methods, so-called PSI tools, on belief networks and
probabilistic programs, basically through mapping program values to symbolic
expressions.

Outline. Section 2 introduces Bayesian networks and probabilistic inference. Sec-
tion 3 briefly recapitulates Markov chain model checking. Section 4 presents the
various symbolic data structures that are relevant to this work. Section 5 details
how BNs are mapped onto Markov chains and how inference can be reduced
to computing reachability probabilities. Section 6 reports on the experimental
results, while Section 7 concludes the paper.

2 Bayesian Networks

A Bayesian network (BN for short) is a tuple B = (G,Θ) where G = (V,E) is
a directed acyclic graph with finite set of vertices V in which v ∈ V represents
a random variable taking values from the finite domain D and edge (v, w) ∈ E
represents the dependency of w on v. We let parents(v) = {w ∈ V | (w, v) ∈ E}.
For each vertex v with k parents, the function Θv : Dk → Dist(D) is the con-
ditional probability table of (the random variable corresponding to) vertex v.
Dist(D) here denotes the set of probability distribution functions on D. Figure
1 indicates a small BN, in which all the variables are binary. The DAG indicates
the dependencies between the variables. For example, the grade a student gets
for an exam depends on whether the exam has been easy or difficult, and addi-
tionally on whether she has been prepared for the exam. See Figure 1.
The conditional probability table Θv (CPT for short) of vertex v defines a prob-
ability distribution which determines the evaluation of v, given some evaluation
of parents(v). For example, according to the CPT of Grade, the probability of
a low grade is 0.95 for an easy exam and non-prepared student.
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Fig. 1. Simple example of Bayesain networks - Student Mood

The semantics of BN B = (V,E,Θ) is the joint probability function that it
defines. Let W ⊆ V be a downward-closed set of vertices where w ∈W has value
w ∈ D. The unique joint probability function of BN B equals:

Pr(W = W ) =
∏

w∈W
Pr(w = w | parents(w) = parents(w)) (1)

In this paper, we are interested in probabilistic inference. Let B be a BN with
set V of vertices, F ⊆ V be the evidence, and H ⊆ V be the hypothesis. The
evidence can be simply seen as what we already know and the hypothesis as what
we are interested in, given the evidence. The problem of (exact) probabilistic
inference is to determine the following conditional probability:

Pr(H = h | F = f) =
Pr(H = h ∧ F = f)

Pr(F = f)
(2)

In case Pr(F = f) = 0, the query is considered ill-conditioned. In the student
mood example, shown in Figure 1, let assume that we are interested to know
how likely a student ends up with a bad mood after getting a bad grade for an
easy exam, given that she is well prepared. This is defined as:

Pr(D = 0, G = 0,M = 0 | P = 1) =
Pr(D = 0, G = 0,M = 0, P = 1)

Pr(P = 1)

=
0.6 · 0.5 · 0.9 · 0.3

0.3
=

0.081

0.3
= 0.27

The decision variant of probabilistic inference can be defined for a given proba-
bility p ∈ Q ∩ [0, 1) as follows:

Does Pr(H = h | F = f) > p?

This problem is PP-complete [17]. The average Markov blanket of a BN is an
indication of the practical complexity of performing inference. The Markov blan-
ket for a vertex v in a BN is the set ∂v composed of the parents, the children,
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and the spouses of v [17], where the spouses of v are the nodes that have some
common children with v. It follows that Pr(v | ∂v ∧ w) = Pr(v | ∂v), for any
w ∈ V . The average Markov blanket of a BN, or AMB for short, then is the av-

erage size of the Markov blanket of all its vertices, that is,
1

|V |
∑

v∈V |∂v|. AMB

indicates the average degree of dependence between the random variables in the
BN.

3 Markov Chain Model Checking

Since in this work we are focused on discrete time BNs, we are interested in
discrete-time Markov chains. DTMCs or simply MCs for short, are simple prob-
abilistic models that equip each edge with a probability. An MC M is a tuple
(Σ, σI , P ) where Σ is a countable non-empty set of states, σI is the initial state,
and P : S → Dist(Σ) is the transition probability function.
In this work we are interested in computing reachability probabilities in an MC.
The reachability probability for G ⊆ Σ is defined as the probability of finally
reaching G, starting from the initial state σI . This is denoted by PrM (♦G).
Computing PrM (♦G) can be reduced to computing the unique solution of a
linear equation system [29] whose size is linear in |Σ|. This can be done in a
symbolic manner using MTBDDs [4].

4 Symbolic Data Structures

The need to represent Boolean functions and probability distributions in a suc-
cinct manner has led to various compact representations [8,3,22,18,30]. Sym-
bolic model checking mainly relies on set-based and binary encoding of states
and transitions enabling the use of compact representations such as BDDs and
MTBDDs. In the following we briefly review the data structures related to this
work: BDDs, MTBDDs, vtrees, SDDs and PSDDs. The first two are popular in
symbolic model checking while the last three are state-of-the-art in probabilistic
inference.

4.1 Reduced Ordered Binary Decision Diagrams

ROBDDs or simply BDDs for short, are dominantly-used structures for repre-
senting switching functions. BDDs result from compacting binary decision trees
mainly by eliminating don’t care nodes and duplicated subtrees. Essential char-
acteristic of ROBDDs is that they are canonical for a given function and a given
variable ordering [8]. Optimal variable orderings can yield very succinct ROB-
DDs. Although finding the optimal variable ordering is NP-hard [7], ROBDDs
can be very compact in practice [10].
Let ℘ = (z1, ..., zm) be a (total) variable ordering for V ar = {z1, ..., zm} where
z1 <℘ ... <℘ zm. An ℘-OBDD is a tuple B = (V, VI , VT , succ0, succ1, var, val, v0)
with the finite set V of nodes, partitioned into inner nodes VI and terminal nodes
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VT . v0 ∈ VI is the unique distinguished root node. succ0, succ1 : VI → V are the
successor functions assigning a zero-successor vr ∈ V and a one-successor vl ∈ V
to each v ∈ V . The labelling functions var : VI → V ar and val : VT → {0, 1}
must satisfy the following equation for v ∈ VI and w ∈ {succ0(v), succ1(v)}:

(var(v) = zi ∧ w ∈ VI)⇒ var(w) = zj with zi <℘ zj . (3)

Every inner node v in an OBDD represents a variable from V ar. The terminal
nodes are mapped to 0 or 1. Based on the evaluation of var(v) either to 0 or
to 1, the transition from v to the next node is chosen from {succ0(v), succ1(v)}.
The semantics of an ℘-OBDD is the switching function fB where fB([z1 =
b1, ..., zm = bm]) is determined by the value of the resulting leaf obtained by
traversing the OBDD starting from the root v0 and branching according to the
evaluation [z1 = b1, ..., zm = bm].
For terminal v ∈ VT , fv represents the constant function fv with value val(v).
For v ∈ VI , fv is defined based on the Shannon expansion over v as fv =
(¬z ∧ fsucc0(v))∨ (z ∧ fsucc1(v)), where z = var(v). A ℘-OBDD B is reduced if
for every pair (v, w) of nodes in B, v 6= w implies fv 6= fw. An OBDD can be
reduced by recursively applying simple reduction rules: the elimination of don’t
care vertices, and the elimination of isomorphic subtrees.

4.2 Multi-Terminal BDDs

While BDDs represent Boolean functions, the terminal values in MTBDDs can
acquire values from other domains such as real or rational numbers. This allows
rational or real functions to be succinctly represented, enabling representing
probability distribution functions. The formal definition of MTBDD is not very
different from the one for BDD. Let V ar and ℘ be as before. An MTBDD M is the
same structure as an OBDD except that (in our setting) the value function val
is refined to val : VT → [0, 1] assigning each terminal node v ∈ VT a probability
val(v). The semantics of MTBDD M is defined by fM : Eval(V ar) → [0, 1]
similarly to fB for BDD B.

4.3 Sentential Decision Diagrams

Sentential Decision Diagrams [18] represent propositional knowledge bases. They
are inspired by two concepts: structured decomposability [38] which is based
on vtrees, and the generalisation of Shannon decomposition which is strongly
deterministic decomposition [39].

vtree. A vtree [38] for a set of variables V is a full (but not necessarily complete),
rooted binary tree whose leaves represent the variables in V . The node v and
the subtree rooted at the node v are often called the same. Let var(v) indicate
the set of variables stored in the leaves of the subtree rooted at the node v. Let
vl and vr be respectively indicate the left and right children of v. A Boolean
function f in Decomposable Negation Normal Form (DNNF) is said to respect
a vtree T if for every conjunction α ∧ β in f , there is a node t in T such that
var(α) ⊆ var(tl) and var(β) ⊆ var(tr).
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Strongly deterministic decomposition. Let f be a Boolean function with disjoint
sets of variables X and Y . If f can be written as (p1(X)∧s1(Y ))∨ ...∨ (pn(X)∧
sn(Y )), then {(p1, s1), ..., (pn, sn)} is called an (X,Y )-decomposition of f in
terms of Boolean functions pi and si on X and Y respectively. Provided that
pi ∧ pj = false for i 6= j, the decomposition is called strongly deterministic
on X. Here, each pi is called a prime and each si a sub. Let S be a strongly
deterministic (X,Y )-decomposition of function f . S is called an X-partition of
f iff its primes make a partition. This means each prime is consistent (i.e., can
be true at some evaluation), every pair of distinct primes are mutually exclusive,
and the disjunction of all primes is valid (true).

SDD. An SDD can be seen as a recursive (X,Y )-strongly deterministic decom-
position of a switching function according to a particular vtree, starting from
the root node. The semantics of SDD S is defined by the switching function fS
with respect to the vtree v. S is an SDD respecting vtree v iff (1) S = ⊥ or
S = >, with the semantics f⊥ = false and f> = true, (2) S = X or S = ¬X
and v is a leaf with variable X with the semantics fX = X and f¬X = ¬X, (3)
S = {(p1, s1), ..., (pn, sn)}, v is internal, p1, ..., pn are SDDs that respect subtrees
of vl, and s1, ..., sn are SDDs that respect subtrees of vr, where fp1

, ..., fpn
makes

a partition. In this case, the semantics of SDD S is given by fS =
n∨

i=1

(pi ∧ si).

An SDD is compressed iff all its subs are distinct (si 6= sj for i 6= j). Moreover, it
is called trimmed if it does not contain any decomposition of the form {(>,S)}
or {(S,>), (¬S,⊥)}. These two properties characterise the canonicity of SDDs
as follows. Two SDDs that are compressed and trimmed and respect the same
vtree are semantically equivalent if and only if they are equal [18]. Thus, vtrees
for SDDs resemble the role of variable ordering for BDDs. In the same manner,
compression and trimming resemble reduction in BDDs.

Fig. 2. An SDD (right) and the corresponding vtree (left) for Student Mood example
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Example 1. Figure 2 (right) indicates an SDD for the Student Mood example
(see Figure 1). The underlying vtree is depicted in Figure 2 (left). The two-
parts boxes in SDD visually indicate the prime-sub pairs. The circles indicate
decision nodes. Decision node (p1, s1), ..., (pk, sk) has k outgoing edges and edge
i is connected to (pi, si). The SDD respects the vtree in the sense that on each
vtree node the leaves in the left subtree determine the primes and the leaves in
the right subtree determine the subs. For instance, for node 3 in the vtree, P
determines the primes and G and M determine the subs. Since each decision
node makes an (X,Y )-partition, each variable evaluation holds on exactly one
prime.

4.4 Probabilistic SDDs

PSDDs [30] are recent representations in the domain of reasoning and learning.
Similarly to MTBDDs, which are BDDs to represent non-Boolean functions,
SDDs are extended to PSDDs in order to particularly represent probability dis-
tributions. A single SDD can be parameterized in infinitely many ways, each
yielding a probability distribution. This is similar to BNs in a sense that each
DAG can be extended to infinitely many Θs, (i.e., conditional probability ta-
bles) where each Θ specifies a probability distribution. PSDDs are complete in
the sense that every distribution can be induced by a PSDD. PSDDs are canoni-
cal in the sense that for a given vtree, there is a unique trimmed and compressed
PSDD. Interestingly, computing the probability of a term can be done in time
linear in the PSDD size [30].

Syntax. A PSDD parametrizes an SDD in the following manner: (1) Every de-
cision node (pi, si), ..., (pk, sk) and every prime pi is equipped with a positive
parameter θi such that θ1 + ...+ θk = 1 and θi = 0 iff si = ⊥. The PSDD deci-
sion node is indicated by (p1, s1, θ1), ..., (pk, sk, θk). (2) For each terminal node
>, a positive parameter θ is supplied such that 0 < θ < 1. Syntactically, the
terminal node > with parameter θ is indicated by x : θ, where x is the variable
of the vtree leaf node that > is normalized [18] for. Other terminal nodes (⊥, x,
and ¬x) have fixed pre-defined parameters.

Semantics. Let n be a PSDD node respecting a vtree node v. Node n represents
the probability distribution Prn over the variables of vtree v defined by:

– If n is a terminal node and v consists of variable x, then
• for n = x : θ, Prn(x) = θ and Prn(¬x) = 1− θ
• for n = ⊥, Prn(x) = 0 and Prn(¬x) = 0
• for n = x, Prn(x) = 1 and Prn(¬x) = 0
• for n = ¬x, Prn(x) = 0 and Prn(¬x) = 1.

– If n is a decision node (p1, s1, θ1), ..., (pk, sk, θk) and v, the corresponding
vtree node, has X as left variables and Y as right variables, Prn(X,Y ) =
Prpi

(X) · Prsi(Y ) · θi for i that X |= pi. Here, X denotes the evaluation of
X’s variables. The condition X |= pi holds on exactly one of the primes, by
definition of (X,Y )-decomposition.
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Example 2. Figure 3 (right) denotes the PSDD for the Student Mood example,
with the same underlying vtree as in Example 1. The visual representation of
PSDD extends SDD in two manners: (1) edge i directing from the decision
node (p1, s1, θ1), ..., (pk, sk, θk) to the pair (pi, si) is labeled with θi, (2) terminal
node > is replaced by x : θ, according to the PSDD syntax and semantics. The
PSDD in Figure 3 (right) induces the same probability distribution function
induced by the Student Mood BN. For instance, Pr(¬D ∧ P ∧ ¬G ∧ ¬M) =
0.6 · 0.3 · (0.5 · (1− 0.1)) = 0.081, by the PSDD semantics.

Fig. 3. A PSDD (right) and vtree (left) compiled from the Student Mood example

5 BN Analysis using Probabilistic Model Checking

In this section, we are going to explain our approach in detail. First, let us explain
some notations. Let X be a set of variables. Let X denote the evaluation of X’s
variables. We use ∗ to denote a don’t care value. We use µ to denote a probability
distribution. Let

∏n
i=1Xi = X1 × ...×Xn = {(x1, ..., xn)|x1 ∈ X1, ..., xn ∈ Xn}

be the Cartesian product over the sets Xi, ..., Xn.
The basic idea for the transformation is to map a Bayesian network B onto the
Markov chain MB such that the conditional reachability probabilities in MB

correspond to the conditional probabilistic inference queries in B. Colloquially
stated:

PrB(H = h | F = f) = PrMB
(♦(H = h) | ♦(F = f)). (4)

The definition of MC MB is as follows.

Definition 1. (The Markov chain of a BN). Let B = (V,E,Θ) be a
BN with V = {v1, ..., vn} and dom(vi) = Di with elements di ∈ Di. For
% = (v1, ..., vn) a topological order on the DAG (V,E), let MC MB = (Σ, σI , P )
be the Markov chain of B where:



10 B. Salmani and J.-P. Katoen

– Σ =

n∏
i=1

{vi} × (Di ∪ {∗}) is the set of states,

– σI = V × {∗} is the initial state, and
– P : Σ × Σ → [0, 1] is the transition probability function defined by the

following SOS rules:

Θv1 = µ, µ(d1) = p

σI
p−→ σ(v1,d1) = ((v1, d1), (v2, ∗), ..., (vn, ∗))

(5)

Θvi(parents(vi)) = µ, µ(di) = p,

parents(vi)× parents(vi) ⊆ {(v1, d1), ..., (vi−1, di−1)}
σ = ((v1, d1), ..., (vi−1, di−1), (vi, ∗), ..., (vn, ∗))

p−→ σ′ = ((v1, d1), ..., (vi, di), (vi+1, ∗), ..., (vn, ∗))

(6)

σ = ((v1, d1), ..., (vn, dn))
1−→ σ = ((v1, d1), ..., (vn, dn)). (7)

The states in MC MB are tuples of pairs in the form of (v, d) where v is
a variable of BN B and d ∈ dom(v) ∪ {∗} is the current value of v. The sym-
bol ∗ is used to denote the initial evaluation of a variable. The initial state is
((v1, ∗), ..., (vn, ∗)). The transition probability function specifies the probability
of evolving between states. These transition probabilities correspond to the val-
ues in the conditional probability tables of B’s variables. The rule (5) defines
the transitions from the initial state to its successors according to Θv1 . Since
v1 is the first variable in the topological order, parents(v1) = ∅. If Θv1 = µ
and µ(d1) = p, there is a transition with probability p from the initial state σI
to the state σ in which all the variables are ∗ except for v1 which is mapped
to d1. Let states in which all the variables have taken values from their do-
main constitute the final states, {(v, d) | v ∈ V, d 6= ∗}. According to the rule
(7), the final states are equipped with a 1-probability self-loop. The transitions
from the states that are neither initial nor final are formalized in the rule (6).
Let parents(vi) be the evaluation of all the variables in the set parents(vi). Let
µ = Θ(parents(vi)). If µ(di) = p, then from the state σ where all variables before
vi based on the ordering % are evaluated to values other than ∗, the transition
goes to the state σ′ where all the variable evaluations remain the same, except
for (vi, ∗) that changes to (vi, di). The transition can take place only provided
that all the variables in parents(vi) are already evaluated at the state σ and
their evaluation is consistent with the values in parents(vi). This is ensured by
the premise parents(vi)× parents(vi) ⊆ {(v1, d1), ..., (vi−1, di−1)}.

Example 3. Reconsider the BN Student Mood shown in the Figure 1. Figure 4
(left) indicates the MC MStudentMood resulting from the above definition. Here,
the don’t care evaluations are omitted from the states and the states related to
”Mood” variable are ignored. The probabilities on evolving edges are based on
their corresponding values in the conditional probability tables. For instance, for
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the left most path in the MC this is 0.4, 0.3, and 0.95. The last number is set,
for example, according to the Grade’s CPT where the probability of Grade =
1 equals 0.95, for Dif = 1 and Prep = 1. The MTBDD corresponding to
the probability distribution over the leaves of MStudentMood is shown in Figure
4 (right), again abstracting from don’t care values and ”Mood” variable. The
nodes binary evaluations are coded as the right and left edges in an MTBDD.
For example, the left most path indicates all the variables being evaluated to
1. The terminal nodes denote the joint probability, which in this case equals
0.4 · 0.3 · 0.95 = 0.114.

Fig. 4. The corresponding MC (left) and MTBDD (right) for Student Mood example

Proposition 1. (The size of MC MB) Let B be a BN with dom(vi) = Di for
each vi ∈ V and |MB | be the number of states in the Markov chain MB. Then,

|MB | ≤ 1 +

n∑
i=1

i∏
k=1

|Dk|. (8)

In the special case where all random variables in B have domain D

|MB | ≤
n∑

i=0

|D|i, thus |MB | ≤
1− |D|n+1

1− |D|
.

Example 4. The number of states in Figure 4 (right) is |MB | = 24 − 1 = 15.

We now consider the reachability probability as shown in the equation (4).
By definition of conditional probabilities we have:

PrMB
(♦(H = h) | ♦(F = f)) =

PrMB
(♦(H = h) ∧ ♦(F = f)))

PrMB
(♦(F = f))

(9)

To determine the right-hand side we observe that given the tree structure of
MC MB it holds:
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Proposition 2. For Markov Chain MB of BN B:

PrMB
(♦(H = h) ∧ ♦(F = f)) = PrMB

(♦(H = h ∧ F = f)).

From this, it is concluded that inference in BN B can be reduced to computing
reachability probabilities in MC MB .

6 Experimental Results

Experimental setup. We implemented a prototypical software tool for performing
Bayesian inference as an extension of the probabilistic model checker Storm
[20]. Our tool takes as input a BN in the Bayesian network Interchange Format
[1] (BIF, for short). The BN is translated into a Markov chain as described
in Definition 1. The MC is specified using the Jani [9] modelling language, a
high-level modelling language in the domain of probabilistic model checking. We
evaluated our tool using various BN benchmarks from the Bayesian network
repository bnlearn [41] that contains several BNs categorized in small, medium,
large, very large, and huge networks. Table 1 indicates some statistics of the
evaluated BNs from the repository. The first column denotes whether all the
variables in the BN are binary. The other statistics are the number of vertices, the
number of edges, the maximum in-degree, the maximum domain size of variables,
the average Markov blanket, and the number of parameters. The number of
parameters is related to the total number of probabilities in all the conditional
probability tables. All our experiments were conducted on a 2.3 GHz Intel Core
i5 processor with 16 GB of RAM.
We focused our experimental validations on the following three questions:

1. What is the performance of MTBDD-based symbolic probabilistic model
checking on Bayesian inference?

2. What is the effect of the number of observations and their depth in the
topological ordering on the inference time in our approach?

3. How does inference using MTBDDs compares to PSDD techniques in terms
of compilation time and inference time?

Bayesian inference using MTBDD-based model checking. In order to answer the
first question, we have fed the Jani descriptions of the MCs into storm’s sparse
engine, and storm’s bdd engine. The former fully builds a sparse matrix of the
Markov chain MB of BN B, while the latter generates an MTBDD representation
from the Jani file. The variable ordering of the MTBDD is determined based on
the topological order of the BN. Table 2 indicates the size of the resulting data
structures and the compilation time. Here E19, for instance, denotes 1019 as
the order of magnitude. The inference time on the sparse representation is pro-
hibitive, even for medium-sized BNs, while inference using MTBDDs is mostly
a matter of a few seconds or less. The large MC sizes are due to the exponential
growth of the state space in the domain of the BN’s variables, see Proposition
1. The significant size reduction with MTBDDs is due to the symmetrical and



Bayesian Inference by Symbolic Model Checking 13

Table 1. Statistics on the evaluated Bayesian networks in bnlearn

Binary BN #Vertices #Edges InDegreeMax Dmax AMB #Parameters

YES

cancer 5 4 2 2 2.00 10
earthquake 5 4 2 2 2.00 10
asia 8 8 2 2 2.5 18
win95pts 76 112 7 2 5.92 574
andes 223 338 6 2 5.61 1157

NO

survey 6 6 2 3 2.67 21
sachs 11 17 3 3 3.09 178
child 20 25 2 6 3.00 230
alarm 37 46 4 4 3.51 509
insurance 27 52 3 5 5.19 984
hepar2 70 123 6 4 4.51 1453
hailfinder 56 66 4 11 3.54 2656
water 32 66 5 4 7.69 10083
pathfinder 135 200 5 63 3.81 72079

repetitive structure of the MB . Those kind of symmetries and duplicated sub-
trees are merged in the MTBDD representation. The type of MTBDD shown
in Figure 4 (right) represents a discrete probability distribution. However, the
MTBDD generated by storm encodes the Markov chain, i.e. its terminal nodes
carry the transition probabilities of the Markov chain. This makes sharing of the
subgraphs much more likely.

Table 2. Analysis of BN benchmarks using storm symbolic engine compared to sparse

Size Construction T ime

Binary BN MC (#states) MTBDD (#nodes) Sparse Engine Symbolic Engine

YES

cancer 63 56 0.018s 0.007s
earthquake 63 55 0.023s 0.006s
asia 278 154 0.028s 0.011s
win95pts E19 446752 >1.5h 11s
andes E67 339485 >1.5h 180s

NO

survey 238 70 0.031s 0.008
sachs 265720 165 0.469s 0.072s
child E9 731 >1.5h 0.277s
alarm E16 2361 >1.5h 1s
insurance E11 102903 >1.5h 2s
hepar2 E42 7675 >1.5h 17s
hailfinder E17 152201 >1.5h 18s
water E9 64744 >1.5h 20s
pathfinder E242 MO >1.5h -
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The influence of observations. In order to answer the second question, we have
chosen different ways to pick the set of evidences. This is aimed to investigate
how the number of evidence nodes and their depth in the topological order
affect the verification time. For each BN, three different sets of observations
are considered; the evidence nodes at the beginning in the topological order,
a random selection, and the last nodes in the topological ordering. We also
varied the number of evidence nodes. Figure 5 (in log-log scale) demonstrates
the results for two large benchmarks, win95pts (left) and hepar2 (right). The
x-axis denotes the number of evidence nodes and the y-axis denotes the model
checking time in seconds. For the ”first” setting, where i nodes are picked from
the beginning of the topological order, the time for performing model checking
is relatively small; less than 3.064s seconds in all the experiments for win95pts
and less than 0.682 seconds in all the experiments for hepar2. The results follow
a similar pattern in almost all the other BN benchmarks. The last nodes in
the topological order are the highest dependent ones on the other nodes. That
explains why model checking is significantly more time-consuming in the ”last”
setting. The verification time becomes negligible if the number of evidences is
large. That is mostly because then the final result of the inference tends more
likely to become zero when the number of evidence nodes are high. In this
case there are many restrictions to be satisfied, and the zero probability can be
computed very fast.
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Fig. 5. Inference time (in s) for different size and depth of evidence for win95pts (left)
and hepar2 (right) - log log scale

Comparing MTBDD-based model checking to inference using PSDDs. In order
to answer our last question, we have conducted a series of experiments to see how
our approach performs compared to the recent prominent inference tool based
on PSDD. PSDD1 is a scalable tool for reasoning and learning on belief networks

1 https://github.com/hahaXD/psdd

https://github.com/hahaXD/psdd
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Table 3. Empirical comparison with PSDD based inference regarding different vtree
methods - Binary cases

BN

#
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MTBDD
PSDD

random vtree
PSDD

fixed vtree
PSDD

minfill vtree
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cancer

1

0.022s

0.001s

0.016s

0.002s

0.016s

0.003s

0.005s

0.003s
2 0.001s 0.003s 0.003s 0.003s
3 0.001s 0.003s 0.003s 0.003s
4 0.001s 0.003s 0.002s 0.003s
5 0.001s 0.003s 0.003s 0.003s

earth-
quake

1
0.006s

0.001s
0.015s

0.003s
0.016s

0.003s
0.004s

0.003s
2 0.001s 0.003s 0.003s 0.003s
4 0.001s 0.003s 0.003s 0.003s

asia

1

0.018s

0.001s

0.026s

0.004s

0.023s

0.003s

0.005s

0.003s
2 0.001s 0.003s 0.003s 0.003s
4 0.001s 0.004s 0.004s 0.003s
8 0.002s 0.003s 0.003s 0.003s

win95pts

1

11.214s

2.409s

0.258s

0.074s

0.233s

0.068s

0.047s

0.042s
2 2.760s 0.066s 0.060s 0.039s
4 2.501s 0.067s 0.067s 0.039s
8 2.452s 0.063s 0.061s 0.039s
16 2.576s 0.056s 0.050s 0.033s
32 0.671s 0.053s 0.046s 0.033s
64 0.658s 0.053s 0.043 0.032s

andes

1

180s

1.165s

12.617s

5.479s

13.046s

12.893s

4.724s

4.863s
2 0.989s 5.824s 12.832s 4.818s
4 0.992s 5.423s 13.312s 4.823s
8 1.144s 5.620s 12.874s 4.838s
16 1.247s 5.612s 9.921s 4.122s
32 1.385s 5.457s 10.362s 4.120s
64 2.538s 5.552s 8.996s 3.442s
128 3.488s 3.656s 8.096s 3.141s
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Table 4. Empirical comparison with PSDD based inference regarding different vtree
methods - Non-binary cases

BN

#
N
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#
E
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MTBDD
PSDD

random vtree
PSDD

fixed vtree
PSDD

minfill vtree
C

o
m

p
il
a
ti

o
n

In
fe

re
n
ce

C
o
m

p
il
a
ti

o
n

In
fe

re
n
ce

C
o
m

p
il
a
ti

o
n

In
fe

re
n
ce

C
o
m

p
il
a
ti

o
n

In
fe

re
n
ce

survey 14
1

0.018s
0.002s

0.114s
0.004s

0.129s
0.004s

0.019s
0.004s

2 0.002s 0.004s 0.003s 0.004s
4 0.004s 0.003s 0.003s 0.003s

sachs 33

1

0.076s

0.002s

0.208s

0.008s

0.212s

0.008s

0.096s

0.010s
2 0.002s 0.008s 0.008s 0.008s
4 0.004s 0.009s 0.009s 0.009s
8 0.004s 0.008s 0.007s 0.008s

child 60

1

0.273s

0.014s

0.304s

0.014s

0.293s

0.012s

0.191s

0.021s
2 0.004s 0.013s 0.010s 0.018s
4 0.005s 0.013s 0.010s 0.018s
8 0.006s 0.010s 0.010s 0.013s
16 0.008s 0.011s 0.010s 0.016s

alarm 104

1

1.538s

0.010s

0.703s

0.014s

0.685s

0.012s

0.345s

0.013s
2 0.011s 0.012s 0.013s 0.012s
4 0.013s 0.013s 0.013s 0.012s
8 0.014s 0.013s 0.013s 0.013s
16 0.019s 0.010s 0.011s 0.010s
32 0.031s 0.013s 0.013s 0.012s

insur-
ance

88

1

2.258s

0.432s

0.695s

0.011s

0.672s

0.013s

0.342s

0.012s
2 0.462s 0.012s 0.012s 0.012s
4 0.461s 0.012s 0.013s 0.012s
8 0.478s 0.013s 0.013s 0.012s
16 0.174s 0.012s 0.011s 0.010s

he-
par2

162

1

17s

0.074s

32.129s

0.058s

37.466s

0.054s

12.205s

0.056s
2 0.069s 0.054s 0.049s 0.054s
4 0.076s 0.052s 0.044s 0.053s
8 0.083s 0.052s 0.043s 0.043s
16 0.101s 0.045s 0.043s 0.033s
32 0.144s 0.039s 0.036s 0.051s
64 0.191s 0.042s 0.038s 0.051s
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in the AI literature. We have compiled the BNs in the benchmark into MTBDD
with storm symbolic engine. To this end, we have converted the benchmark BNs
into PSDDs and vtrees using the PSDD-Nips package2. Our experiments covers
the available vtree methods: random, fixed and minfill. The decisive difference
between these methods is the heuristics they employ to triangulate the DAG
underlying a BN [26]. Due to the fact that the PSDD packages are inherently
limited to perform inference only on BNs with binary variables, we categorize
our results into two parts: binary BNs and non-binary BNs. Table 3 indicates
the results for the binary benchmarks. The results include the compilation time
and inference time by different methods, taking the same sets of evidence nodes.
In each row the minimum inference time is highlighted in bold face. As inference
in our tool is applicable to non-binary BNs, we have built a prototypical script to
binarize non-binary networks such that they can be fed into the PSDD package.
Table 4 indicates the results for these non-binary benchmarks where #Nodes
indicates the number of resulting binary variables. The pre-processing time for
conversion and binarization is not included. Due to the large number of param-
eters in the benchmarks ”hailfinder”, ”water”, and ”pathfinder” (see Table 1),
these cases are computationally hard to binarize. Therefore, these cases are not
included in Table 4.

The main conclusions of our experimental results are:

1. Inference using MTBDD-based symbolic model checking is competitive to
BN-specific symbolic techniques like PSDD for small to large BNs.

2. PSDD techniques outperform our MTBDD-based approach for very large
and huge BNs.

3. MTBDD-based inference is quite sensitive to the number and depth (in the
topological order) of evidences.

7 Conclusions

In this paper, we have investigated MTBDD-based symbolic probabilistic model
checking to perform exact inference on Bayesian networks. We have translated
Bayesian networks into Markov chains, and have reduced inference to comput-
ing reachability probabilities. Our prototypical tool chain built on top of storm
[20] is evaluated on BNs from the bnlearn repository. We investigated several
hypotheses to see which factors are affecting the inference time.
Future work consists of optimizing our implementation and approach, and to
consider other metrics on BNs, such as maximum a posteriori (MAP) and the
most probable explanation (MPE). We also like to generalize our approach to
recursive BNs [27] or dynamic BNs [28], which bring respectively the notion
of recursion and time on the table. Moreover, we believe that this work pro-
vides a good basis for performing probabilistic model checking on a broader
set of graphical models such as Markov networks, which are, unlike Bayesian
networks, undirected in nature.

2 https://github.com/hahaXD/psdd_nips

https://github.com/hahaXD/psdd_nips
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