Skip to main content

Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12436))

Included in the following conference series:

  • 3471 Accesses

Abstract

There has been a debate of using 2D and 3D convolution on volumetric medical image segmentation. The problem is that 2D convolution loses 3D spatial relationship of image features, while 3D convolution layers are hard to train from scratch due to the limited size of medical image dataset. Employing more trainable parameters and complicated connections may improve the performance of 3D CNN, however, inducing extra computational burden at the same time. It is meaningful to improve performance of current 3D medical image processing without requiring extra inference computation and memory resources. In this paper, we propose a general solution, Division-Fusion (DF)-CNN for free performance improvement on any available 3D medical image segmentation approach. During the division phase, different view-based kernels are divided from a single 3D kernel to extract multi-view context information that strengthens the spatial information of feature maps. During the fusion phase, all kernels are fused into one 3D kernel to reduce the parameters of deployed model. We extensively evaluated our DF mechanism on prostate ultrasound volume segmentation. The results demonstrate a consistent improvement over different benchmark models with a clear margin.

This work was partially supported by National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health (NIH) under awards R21EB028001 and R01EB027898, and through an NIH Bench-to-Bedside award made possible by the National Cancer Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortazi, A., Burt, J., Bagci, U.: Multi-planar deep segmentation networks for cardiac substructures from MRI and CT. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 199–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_21

    Chapter  Google Scholar 

  2. Moeskops, P., et al.: Deep learning for multi-task medical image segmentation in multiple modalities. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 478–486. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_55

    Chapter  Google Scholar 

  3. Fang, X., Yan, P.: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction. IEEE Trans. Med. Imaging, 1–1 (2020)

    Google Scholar 

  4. Milletari, F., Navab, N., Ahmadi, S.-A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Zhu, Q., Du, B., Yan, P.: Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans. Med. Imaging 39(3), 753–763 (2019)

    Article  Google Scholar 

  7. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  8. Xia, Y., Xie, L., Liu, F., Zhu, Z., Fishman, E.K., Yuille, A.L.: Bridging the gap between 2D and 3D organ segmentation with volumetric fusion net. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, Gabor (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 445–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_51

    Chapter  Google Scholar 

  9. Zheng, H., et al.: A new ensemble learning framework for 3D biomedical image segmentation. Proc. AAAI Conf. Artif. Intell. 33, 5909–5916 (2019)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  12. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  13. Ding, X., Guo, Y., Ding, G., Han, J.: Acnet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1911–1920 (2019)

    Google Scholar 

  14. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA Cancer J. Clin. 69(1), 7–34 (2019)

    Article  Google Scholar 

  15. Yan, P., Xu, S., Turkbey, B., Kruecker, J.: Discrete deformable model guided by partial active shape model for TRUS image segmentation. IEEE Trans. Biomed. Eng. 57(5), 1158–1166 (2010)

    Article  Google Scholar 

  16. Wang, Y., et al.: Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Trans. Med. Imaging 38(12), 2768–2778 (2019)

    Article  Google Scholar 

  17. Yan, P., Xu, S., Turkbey, B., Kruecker, J.: Adaptively learning local shape statistics for prostate segmentation in ultrasound. IEEE Trans. Biomed. Eng. 58(3), 633–641 (2010)

    Google Scholar 

  18. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  19. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop Autodiff (2017)

    Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint (2014). arXiv:1412.6980

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  23. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed residual connections for automated prostate segmentation from 3d MR images. In: Thirty-first AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingkun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, X., Sanford, T., Turkbey, B., Xu, S., Wood, B.J., Yan, P. (2020). Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds) Machine Learning in Medical Imaging. MLMI 2020. Lecture Notes in Computer Science(), vol 12436. Springer, Cham. https://doi.org/10.1007/978-3-030-59861-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59861-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59860-0

  • Online ISBN: 978-3-030-59861-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics