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Abstract. Chest X-ray (CXR) is the most common examination for fast
detection of pulmonary abnormalities. Recently, automated algorithms
have been developed to classify multiple diseases and abnormalities in
CXR scans. However, because of the limited availability of scans con-
taining nodules and the subtle properties of nodules in CXRs, state-of-
the-art methods do not perform well on nodule classification. To create
additional data for the training process, standard augmentation tech-
niques are applied. However, the variance introduced by these methods
are limited as the images are typically modified globally. In this paper,
we propose a method for local feature augmentation by extracting lo-
cal nodule features using a generative inpainting network. The network
is applied to generate realistic, healthy tissue and structures in patches
containing nodules. The nodules are entirely removed in the inpainted
representation. The extraction of the nodule features is processed by sub-
traction of the inpainted patch from the nodule patch. With arbitrary
displacement of the extracted nodules in the lung area across different
CXR scans and further local modifications during training, we signif-
icantly increase the nodule classification performance and outperform
state-of-the-art augmentation methods.

Keywords: Nodule classification · Local feature augmentation · Context en-
coder · Chest X-ray

1 Introduction

Lung cancer is one of the most frequent cancer worldwide. Combined with the
high mortality rate, the efficiency of lung cancer diagnosis and treatment is of
paramount importance. In 2019, over 228,000 new cases and over 140,000 esti-
mated deaths are predicted in the US [10]. The chance of surviving is higher
when lung cancer is diagnosed in early cancer stages. The overall 5-year survival
rate is approximately 70% for people with stage IA/B and 50% for people with
stage IIA/B non-small lung cancer [2].
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In the past years, automated systems have been established to support the ra-
diologists in diagnosing abnormalities on CXR images. Recent study shows that
tremendous amount of nodule X-rays are required to compete with the nodule
detection performance of radiologists [6]. State-of-the art augmentation methods
can be used to increase the amount of training data [3,6]. However, most of the
augmentation methods hardly improve model performances as most techniques
are applied on the whole image [9].

We present a method to extract nodules from the image and apply local,
patch-based augmentation approaches to improve the system in nodule versus
non-nodule image classification. A trained image inpainting network of CXR
patches is used to replace a patch containing a nodule with authentic back-
ground structures. By subtracting the inpainted patch from the nodule patch,
nodules can be separated from normal structures (e.g., tissues, bones, etc.). The
extraction of nodules leads to various approaches which can be applied on the
local nodule apart from the global CXR image. We show that a novel idea of aug-
mentation - namely local feature augmentation - improves the system and can
be defined as a better variant for nodule image augmentation based on CXRs.

2 Background and Motivation

2.1 Computer-aided Systems on Pulmonary X-ray Scans

In 2017, NIH released the first public CXR dataset with over 112,000 images
and corresponding abnormality labels [13] which has led to various publications
in classifying multiple abnormalities. The NIH group defines the baseline perfor-
mance with an area under the curve (AUC) average of 0.75 across the abnormal-
ities on their official evaluation set [13]. Hereafter, several groups increase the
abnormality classification performance based on novel training strategies and
network designs [3,5]. State-of-the-art results show that the performance for all
14 abnormalities raise to 0.82 AUC on average whereas the nodule classifica-
tion score is improved to 0.78 AUC [6]. However, over 6,000 nodule images are
required to achieve such performance. Less training images significantly down-
grade the performance as shown by Ausawalaithong et al. [1]. Often, standard
augmentation techniques are applied, e.g., horizontal flipping of the image [3,14].
These methods imply some major drawbacks as the global modifications limit
the degree of freedom to change the image. As nodules are small abnormalities
with less than or equal to 30 millimeters in diameter, relevant features for nodule
classification are only present locally, on a small fraction of the image. Accessing
these local features of the image which contributes to the class prediction allows
us to expand the augmentation space.

2.2 Lung Region Inpainting for Classifier Deception

Recent analysis shows that adversarial attacks can easily change classification
predictions. Taghanaki et al. created a comprehensive evaluation how CXR ab-
normality classification networks act on adversarial perturbations [12]. Given
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image data D = {x1, x2 . . . xn} and its corresponding labels Y = {y1, y2 . . . yn},
a classification model C can be trained by minimization of a loss function l. (1a)

arg min
C

∑
xi∈D

l(C(xi), yi) (1a) arg min
G

∑
xi∈D

l(C(G(xi), y
′
i)) (1b)

The classification model can be attacked, e.g., with adversarial examples,
generated from a model or method G to change the prediction of model C where
yi 6= y′i. (1b)

Our novel approach builds on this basic idea generating realistic-looking
patches in a supervised fashion which are placed in the image and change the
nodule classification prediction. Local nodule features contributing to the class
prediction which are covered by the inpainting frame can be entirely removed.
The isolation process of the local features leads to various ideas; we focus on
augmentation techniques to improve the classification system.

3 Proposed Method

Our local feature augmentation system is composed of two parts. First, we ex-
tract nodule features using a patch inpainting method (left side of Figure 1).
In a second step, with the help of the isolated nodules patches based on a nod-
ule extraction process, we are able to displace nodules and apply further local
augmentation techniques (right side).

3.1 Nodule Inpainting with Context Encoders

Inspired by the work of Sogancioglu et al., we generate a patch inpainting net-
work by using context encoders for our baseline model [11].

We perform several modifications to improve the performance. As the context
encoders do not perform well on predicting borders such that the rectangular
contours of the mask are slightly visible after inpainting [11], we modify the
system by applying the spatially discounted reconstruction loss introduced by
Yu et al. [15]. Missing pixels at the border have less ambiguity, hence, those
pixels are weighted stronger during training. We predict the weight for each
pixel with γr, where r denotes the nearest distance to the mask border. As our
mask size is smaller than the one in the reference work, we adapt γ from 0.99 to
0.97. Further, we increase the network capacity of the network with channel size
cl = 2(8+l) for encoder and adversarial part and cl = 2(12−l) for the decoder. The
layer index l is correspondingly lenc = {0, 1, 2, 3, 4} and ldec/adv = {0, 1, 2, 3}.
From the full image, we extract patches with size 64× 64. A mask is overlayed
with half as large in each dimension as the input patch.

After training, the nodules can be extracted with nprei = oi−I(oMi ) where oi
denotes the original patches including the nodule and oMi the same patches
including the mask which is fed into the patch inpainting network I. Post-
processing steps are applied to remove noises: ni = Θs(max{nprei , 0}),∀i. As
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Fig. 1: Overview of our proposed method: We extract nodule patches from CXR
images. The inpainting network predicts pixels for the mask. The nodule which
has no correlation to the given frame surrounding that mask is entirely removed
and lung tissue is predicted. Local augmentation techniques are applied on the
isolated nodules to increase the classification performance. One augmentation
method, the displacement of the nodule, can be arranged with given lung seg-
mentation masks.

pixels with nodules are brighter than pixels without nodules, we truncate all
negative values to zero. Parameter Θs stands for the bilateral filter with a filter
size of s = 3. We hypothesize that the filter smooths the nodule patches and
removes undesired background noise.

3.2 Local Feature Augmentation Techniques for Chest X-ray
Classification

The isolated nodule patches can be implanted in different ways to augment the
dataset. In this study, we applied the extracted nodules on non-nodule images
and not on the images where the nodules are derived from. In this way, the
original nodule images are kept unchanged and more synthetic nodule images
are produced. According to this augmentation procedure, the dataset is more
balanced with respect to the labels.

Based on the given lung segmentation masks, we randomly insert a nodule
patch in the lung region of an image with probability k. The corresponding class
label is modified adequately. This process is performed for each epoch such that
different images contain nodules during training. We hypothesize this variance
enhancement procedure assists to make the classification model more robust



Leveraging Nodule Features for Local Feature Augmentation 5

during training. In addition to the nodule displacement, we apply further aug-
mentation techniques to the local nodule patch: We use random rotation and
flipping to achieve more variability. Because of the circular structure and the lo-
cal properties of nodules we are able to rotate the patch by r = [0, 360[ degrees,
with r ∈ N0. The entire pipeline of the nodule extraction and augmentation
process can be seen in pseudo code (Algorithm 1).

Data: nodule images x; bounding boxes b
Networks: Original Classification Network C1; Retrained Classification
Network C2; Patch Inpainting Network I

Result: Local Feature Augmentation for Classification Improvement
for i← 0 to len(x) do

oi := getNodulePatch(xi, bi);
pi := I(oMi ) ; // inpaint patch

ni := Θs(max{oi − pi, 0});
if C1(patch2img(xi, pi)) < thr then

consider ni for augmentation;
end

end
while Train(C2) do

if random([0, 1]) < k then
AugmentImg(nrand) ; // insert nodule patch to image

end
train epoch with modified images;

end
Algorithm 1: Local Feature Extraction for Classification Augmentation

4 Experiments

For our experiments, we use the ChestX-ray14 [13] and the JSRT [8] database.
The combined database contains 112,367 images with 6,485 nodule images. Nod-
ule bounding boxes for 233 images are provided in the datasets. We have lung
segmentation masks available for all images retrieved from a standard U-Net
segmentation network [7]. The classification network is trained by using the ar-
chitecture and hyperparameters from the work in [4]. However, we upscale the
input image size to 512×512 to increase the resolution of the overall images and
nodules.

At first, we trained the inpainting network I. We randomly collected 1 mil-
lion, 10,000, and 800 patches for training, validation, and testing, respectively.
The patches are extracted at random position from non-nodule images. The
quantitative evaluation can be seen in Table 1.

In Figure 2, we illustrate 4 example patches (first row). The inpainted image
can be seen in the second row and the subtracted patch after the post-processing
steps in the third row.

In addition to the quantitative and qualitative evaluation in Table 1 and Fig-
ure 2, we show attention maps in Figure 3 based on 2 CXR images. Each possible
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Fig. 2: Qualitative performance of our inpainting method for 4 different examples
(Columns): Original nodule patch (Row 1); Inpainted Patch without nodule
(Row 2); and subtracted patch including post-processing (Row 3)

Table 1: Peak-Signal-to-Noise Ratio (PSNR) on a test set of 800 patches. CE:
Context Encoder

CE [11] CE* CE* [ours]

PSNR
(mean ± std)

26.31 ± 4.48 31.24± 3.77 34.22 ± 3.95

*evaluated on a different test set

patch of an image was inpainted sequentially, fed into the classification network,
and the prediction is placed on the map. Figure 3 shows that the image classi-
fication drops substantially when nodule regions were inpainted. We argue that
the inpainting network is able to successfully remove nodules and replace it with
background tissue to change the classifier prediction. Moreover, the prediction
score remained stable when regions without nodules were inpainted, indicating
that the inpainting network could generate normal patches robustly.

In order to ensure that nodules are reliably removed for augmentation pur-
poses, the inpainting CXR images were individually validated. If the classifi-
cation prediction was lower than the threshold thr = 0.5, we considered the
corresponding patch for the augmentation process. In addition to the training
images, hence, we can include 178 nodule patches. The model was trained in
following way: For each image and epoch we inserted a nodule patch with prob-
ability k. Accordingly, we changed the corresponding nodule label.
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Fig. 3: Classification prediction visualized as attention: We sequentially inpaint
all patches in nodule images and create attention maps based on the class pre-
diction placed on the corresponding position.

Table 2: AUC scores of the classification system. We show results based on
different training set sizes for training the baseline model, adding standard aug-
mentation and our proposed local features augmentation.

Area Under the Curve

Train set size [%] 100 70 50 20 10 5
Training images 79,011 55,307 39,505 15,802 7,901 3,950

Baseline 0.792±0.010 0.776±0.012 0.763±0.009 0.722±0.019 0.667±0.007 0.649±0.009

Standard
Augmentation

0.795±0.004 0.775±0.008 0.769±0.010 0.728±0.013 0.681±0.005 0.655±0.007

Local Feature
Augmentation

0.805±0.004 0.790±0.005 0.781±0.004 0.746±0.005 0.705±0.017 0.669±0.013

To evaluate the benefit of using the local augmentation method on varying
size of the training set, we performed learning curve analysis. We trained the
network with t% images of the training set and evaluated the performance. The
dataset was split patient-wise into 70%, 10%, and 20% for training, validation,
and testing, respectively. We ensured that the images from the extracted nodule
patches were present in the training set. For all experiments, we used a nodule
insertion rate k = 0.05. Each experiment was conducted 3 times. We show the
resulting mean and standard deviation of the 3 runs in Table 2.

We defined the baseline without any augmentation techniques (Row 1). Then,
we conducted experiments with state-of-the-art augmentation on the full image.
We applied random horizontal flipping and random rotation with a degree range
of [−15, 15]. No significant improvement can be seen compared to the baseline
model (Row 2). The evaluation of our local feature augmentation method can be
seen in Row 3. For each column the same training set was applied. For all training
set sizes we state that our augmentation method consistently achieves better
performance, compared to the baseline and standard augmentation method.
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5 Discussion

In the proposed work, we demonstrated a novel image augmentation approach.
We showed increased performance scores on nodule classification by applying
augmentation locally. The advantage of the context model was the nearly un-
limited training data as the local patches were retrieved from the full image.
In this study, we collected 1 million patches for training, derived from a big
data collection. However, only few images include information about nodule de-
tection. Additionally, some nodules had to be sorted out during the retrieving
process such that 178 nodules could be considered for the augmentation process.
An additional radiologist validation process may decrease the amount of rejected
samples as the current process was solely based on the classification system.

The limited amount of nodules led to an improved nodule classification sys-
tem on different training set sizes. In future work, more nodule annotations can
be considered which may further increase the performance with local feature
augmentation. The size of the full images was resized to 512 in each dimension.
Especially small nodules may entirely disappear with this resolution change. Ex-
periments on the original image size may result in an increased collection of valid
nodule patches.

We demonstrated the proposed method based on the classification of nodules.
The system can be expanded to apply local feature augmentation on other local
lung abnormalities, e.g., mass. Furthermore, we see no limitations to handle 3-
dimensional image data, e.g., applying our local feature augmentation method
on lung CT scans.

6 Conclusion

In this paper, we presented a novel idea of image augmentation to improve the
nodule classification system on chest X-ray images. Instead of transforming the
global image with standard augmentation techniques, we created an enhanced
system of an inpainting model with context encoders to directly access nodule
features. The extracted nodules were modified with our novel local feature aug-
mentation method. Experiments conducted on different training set sizes showed
significantly improved performance scores on nodule classification.

Disclaimer The concepts and information presented in this paper are based
on research results that are not commercially available.

References

1. Ausawalaithong, W., Thirach, A., Marukatat, S., Wilaiprasitporn, T.: Automatic
lung cancer prediction from chest x-ray images using the deep learning approach.
In: 11th Biomedical Engineering International Conference (BMEiCON). pp. 1–5
(2018)



Leveraging Nodule Features for Local Feature Augmentation 9

2. Goldstraw, P., Crowley, J., Chansky, K., Giroux, D.J., Groome, P.A., Rami-Porta,
R., Postmus, P.E., Rusch, V., Sobin, L.: The iaslc lung cancer staging project:
Proposals for the revision of the tnm stage groupings in the forthcoming (sev-
enth) edition of the tnm classification of malignant tumours. Journal of Thoracic
Oncology 2(8), 706 – 714 (2007)

3. Guan, Q., Huang, Y., Zhong, Z., Zheng, Z., Zheng, L., Yang, Y.: Diagnose like
a radiologist: Attention guided convolutional neural network for thorax disease
classification. arXiv 1801.09927 (2018)

4. Gündel, S., Grbic, S., Georgescu, B., Liu, S., Maier, A., Comaniciu, D.: Learning
to recognize abnormalities in chest x-rays with location-aware dense networks. In:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applica-
tions. pp. 757–765 (2019)

5. Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L., Fei-Fei, L.: Thoracic dis-
ease identification and localization with limited supervision. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8290–8299
(2018)

6. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul,
A., Langlotz, C., Shpanskaya, K., Lungren, M., Ng, A.: Chexnet: Radiologist-level
pneumonia detection on chest x-rays with deep learning. arXiv 1711.05225 (2017)

7. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015. pp. 234–241. Springer International Publishing, Cham (2015)

8. Shiraishi J., Katsuragawa S., Ikezoe J., Matsumoto T., Kobayashi T., Komatsu
K. et al.: Development of a digital image database for chest radiographs with and
without a lung nodule: Receiver operating characteristic analysis of radiologists’
detection of pulmonary nodules. In: AJR. pp. 71–74 (2000)

9. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. Journal of Big Data 6, 1–48 (2019)

10. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: A Cancer Journal
for Clinicians 69(1), 7–34 (2019)

11. Sogancioglu, E., Hu, S., Belli, D., van Ginneken, B.: Chest x-ray inpainting with
deep generative models. arXiv 1809.01471 (2018)

12. Taghanaki, S., Das, A., Hamarneh, G.: Vulnerability Analysis of Chest X-Ray
Image Classification Against Adversarial Attacks: MICCAI DLF, vol. 11038, pp.
87–94 (2018)

13. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Chestx-ray8:
Hospital-scale chest x-ray database and benchmarks on weakly-supervised clas-
sification and localization of common thorax diseases. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition(CVPR). pp. 3462–3471 (2017)

14. Yao, L., Poblenz, E., Dagunts, D., Covington, B., Bernard, D., Lyman, K.: Learn-
ing to diagnose from scratch by exploiting dependencies among labels. arXiv
1710.10501 (2018)

15. Yu, J., Lin, Z.L., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpaint-
ing with contextual attention. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition pp. 5505–5514 (2018)


	Extracting and Leveraging Nodule Features with Lung Inpainting for Local Feature Augmentation

