Skip to main content

NannyCaps - Monitoring Child Conditions and Activity in Automotive Applications Using Capacitive Proximity Sensing

  • Conference paper
  • First Online:
  • 1210 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12429))

Abstract

Children have to be transported safely. Securing children in a child seat is indicated. Due to structure and restraint systems, children are secured in case of an accident. Children require our attention to keep them healthy and at good mood. Nonetheless, attention must be payed to driving, too. This discrepancy leads to unattended children. Furthermore, responsible must decide to leave their children alone in the vehicle in case of emergencies. This may lead to heat strokes.

Aside of limiting effects of an accident, it would be helpful to assist ambulance after an emergency and to detect injuries even without accident. Besides safety features, preserving good mood of children is an exquisite comfort feature. This can be achieved without privacy issues as they would occur using camera-based systems.

The proposed solution, NannyCaps, is designed to contribute to safety and comfort. An invisible array of capacitive proximity sensors enables head position recognition, sleep state recognition, heart rate recognition and occupancy recognition. The system is included into the child seat, only.

In this paper, we present the design and implementation of NannyCaps. By conducting ten test runs under real world conditions, more than 600 km of data is collected. Using this data, NannyCaps is trained and evaluated. Reasonable results are shown in evaluation. Thus, following the development of NannyCaps will likely improve the situation for children in transportation systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreassi, J.L.: Psychophysiology: Human Behavior & Physiological Response. Psychology Press, London (2013)

    Book  Google Scholar 

  2. Aneiros, D., Garcia, M.: Vehicle child seat safety system. AKAM LLC, United States. US8232874B1 (2012). https://patents.google.com/patent/US8232874B1

  3. Braun, A., Frank, S., Majewski, M., Wang, X.: Capseat: capacitive proximity sensing for automotive activity recognition. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2015, pp. 225–232. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2799250.2799263

  4. Braun, A., Frank, S., Wichert, R.: The capacitive chair. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2015. LNCS, vol. 9189, pp. 397–407. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20804-6_36

    Chapter  Google Scholar 

  5. Braun, A., Schembri, I., Frank, S.: ExerSeat - sensor-supported exercise system for ergonomic microbreaks. In: De Ruyter, B., Kameas, A., Chatzimisios, P., Mavrommati, I. (eds.) AmI 2015. LNCS, vol. 9425, pp. 236–251. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26005-1_16

    Chapter  Google Scholar 

  6. Diewald, A.R., et al.: RF-based child occupation detection in the vehicle interior. In: 2016 17th International Radar Symposium (IRS), pp. 1–4 (2016)

    Google Scholar 

  7. Eppinger, R., et al.: Development of improved injury criteria for the assessment of advanced automotive restraint systems - ii. Technical report, National Highway Traffic Safety Administration (1999)

    Google Scholar 

  8. Fleming, S., et al.: Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. The Lancet 377(9770), 1011–1018 (2011). https://doi.org/10.1016/S0140-6736(10)62226-X. http://www.sciencedirect.com/science/article/pii/S014067361062226X

  9. Frank, S., Kuijper, A.: AuthentiCap - a touchless vehicle authentication and personalization system. In: Braun, A., Wichert, R., Maña, A. (eds.) AmI 2017. LNCS, vol. 10217, pp. 46–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56997-0_4

    Chapter  Google Scholar 

  10. Frank, S., Kuijper, A.: HUDConCap - automotive head-up display controlled with capacitive proximity sensing. In: Braun, A., Wichert, R., Maña, A. (eds.) AmI 2017. LNCS, vol. 10217, pp. 197–213. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56997-0_16

    Chapter  Google Scholar 

  11. Frank, S., Kuijper, A.: Enabling driver feet gestures using capacitive proximity sensing. In: 2018 14th International Conference on Intelligent Environments (IE), pp. 25–31 (2018)

    Google Scholar 

  12. Frank, S., Kuijper, A.: Robust driver foot tracking and foot gesture recognition using capacitive proximity sensing. J. Ambient Intell. Smart Environ. 11(3), 221–235 (2019). https://doi.org/10.3233/AIS-190522. https://content.iospress.com/articles/journal-of-ambient-intelligence-and-smart-environments/ais190522

  13. Fu, B., Damer, N., Kirchbuchner, F., Kuijper, A.: Sensing technology for human activity recognition: a comprehensive survey. IEEE Access 8, 83791–83820 (2020)

    Article  Google Scholar 

  14. George, B., Zangl, H., Bretterklieber, T., Brasseur, G.: Seat occupancy detection based on capacitive sensing. IEEE Trans. Instrum. Meas. 58(5), 1487–1494 (2009)

    Article  Google Scholar 

  15. Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: Opencapsense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: IEEE International Conference on Pervasive Computing and Communications (PerCom 2013), pp. 151–158 (2013)

    Google Scholar 

  16. Jinno, K., Ofuji, M., Oka, Y., Saitou, T.: Passenger detection system with electrodes in the seat and detection method. NEC Corp, European Patent Office. EP1080994A1 (2001). https://patents.google.com/patent/EP1080994A1

  17. Lusso, R., Jensen, M., Walters, E., Wagner, J., Alexander, K.: Automobile safety - child seat entrapment and mechatronic warning system. IFAC Proc. 40(10), 287–294 (2007). https://doi.org/10.3182/20070820-3-US-2918.00040. http://www.sciencedirect.com/science/article/pii/S1474667015319388. 5thIFAC Symposium on Advances in Automotive Control

  18. Michahelles, F., Wicki, R., Schiele, B.: Less contact: heart-rate detection without even touching the user. In: Eighth International Symposium on Wearable Computers, vol. 1, pp. 4–7 (2004)

    Google Scholar 

  19. Morgenthaler, T., et al.: Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep 30(4), 519–529 (2007). https://doi.org/10.1093/sleep/30.4.519

  20. Null, J.: Trends and patterns in pediatric vehicular heatstroke deaths, 1998–2018 (2019). http://noheatstroke.org/Heatstroke_Trends_2018.pdf

  21. OpenCV: OpenCV online documentation: Cascade Classifier, 4.3.0 edn. (2020). https://docs.opencv.org/4.3.0/db/d28/tutorial_cascade_classifier.html

  22. Parthier, R.: Messsignale. In: Parthier, R. (ed.) Messtechnik, pp. 9–19. Springer, Wiesbaden (2016). https://doi.org/10.1007/978-3-658-13598-0_2

    Chapter  Google Scholar 

  23. Ranjan, A., George, B.: A child-left-behind warning system based on capacitive sensing principle. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 702–706 (2013)

    Google Scholar 

  24. Polar Electro Inc.: Polar oh1: User manual (2019). https://support.polar.com/e_manuals/OH1/Polar_OH1_user_manual_English/manual.pdf

  25. Smith, J.R.: Electric field imaging. Ph.D. thesis, Center for Bits and Atoms, Cambridge, MA, USA (1999). aAI0800637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frank, S., Kuijper, A. (2020). NannyCaps - Monitoring Child Conditions and Activity in Automotive Applications Using Capacitive Proximity Sensing. In: Stephanidis, C., Duffy, V.G., Streitz, N., Konomi, S., Krömker, H. (eds) HCI International 2020 – Late Breaking Papers: Digital Human Modeling and Ergonomics, Mobility and Intelligent Environments. HCII 2020. Lecture Notes in Computer Science(), vol 12429. Springer, Cham. https://doi.org/10.1007/978-3-030-59987-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59987-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59986-7

  • Online ISBN: 978-3-030-59987-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics