Skip to main content

Hermite Rational Function Interpolation with Error Correction

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2020)

Abstract

We generalize Hermite interpolation with error correction, which is the methodology for multiplicity algebraic error correction codes, to Hermite interpolation of a rational function over a field \(\mathsf {K}\) from function and function derivative values.

We present an interpolation algorithm that can locate and correct \(\le E\) errors at distinct arguments \(\xi \in \mathsf {K}\) where at least one of the values or values of a derivative is incorrect. The upper bound E for the number of such \(\xi \) is input. Our algorithm sufficiently oversamples the rational function to guarantee a unique interpolant. We sample \((f/g)^{(j)}(\xi _i)\) for \(0 \le j \le \ell _i\), \(1 \le i \le n\), \(\xi _i\) distinct, where \((f/g)^{(j)}\) is the j-th derivative of the rational function f/g, \(f,g\in \mathsf {K}[x]\), \(\text {GCD}(f,g)=1\), \(g\ne 0\), and where \(N = \sum _{i=1}^n (\ell _i+1) \ge D_f + D_g +1+2E + 2\sum _{k=1}^E \ell _k\); \(D_f\) is an upper bound for \(\deg (f)\) and \(D_g\) an upper bound for \(\deg (g)\), which are input to our algorithm. The arguments \(\xi _i\) can be poles, which is truly or falsely indicated by a function value \(\infty \) with the corresponding \(\ell _i=0\). Our results remain valid for fields \(\mathsf {K}\) of characteristic \(\ge 1 + \max _i \ell _i\). Our algorithm has the same asymptotic arithmetic complexity as that for classical Hermite interpolation, namely \(N (\log N)^{O(1)}\).

For polynomials, that is, \(g=1\), and a uniform derivative profile \(\ell _1 = \cdots = \ell _n\), our algorithm specializes to the univariate multiplicity code decoder that is based on the 1986 Welch-Berlekamp algorithm.

This research was supported by the National Science Foundation under Grant CCF-1717100 (Kaltofen and Yang).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beelen, P., Høholdt, T., Nielsen, J.S.R., Wu, Y.: On rational interpolation-based list-decoding and list-decoding binary Goppa codes. IEEE Trans. Inf. Theory shape it. 59(6), 3269–3281 (2013)

    Article  MathSciNet  Google Scholar 

  2. Chin, F.Y.: A generalized asymptotic upper bound for fast polynomial evaluation and interpolation. SIAM J. Comput. 5(4), 682–690 (1976)

    Article  MathSciNet  Google Scholar 

  3. Coxon, N.: Fast systematic encoding of multiplicity codes. J. Symbolic Comput. 94, 234–254 (2019)

    Article  MathSciNet  Google Scholar 

  4. Guruswami, V., Wang, C.: Optimal rate list decoding via derivative codes. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM -2011. LNCS, vol. 6845, pp. 593–604. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22935-0_50

    Chapter  Google Scholar 

  5. Guruswami, V., Wang, C.: Linear-algebraic list decoding for variants of Reed-Solomon codes. IEEE Trans. Inf. Theory 59(6), 3257–3268 (2013)

    Article  MathSciNet  Google Scholar 

  6. Gustavson, F.G., Yun, D.Y.Y.: Fast computation of the rational Hermite interpolant and solving Toeplitz systems of equations via the extended Euclidean algorithm. In: Ng, E.W. (ed.) Proceedings of the International Symposium on Symbolic and Algebraic Computation. pp. 58–64. EUROSAM ’79, Springer, Berlin, Heidelberg (1979)

    Google Scholar 

  7. Kaltofen, E., Trager, B.: Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators. J. Symbolic Comput. 9(3), 301–320 (1990)

    Article  MathSciNet  Google Scholar 

  8. Kaltofen, E., Pernet, C., Storjohann, A., Waddell, C.A.: Early termination in parametric linear system solving and rational function vector recovery with error correction. In: Burr, M. (ed.) ISSAC ’17 Proceedings of 2017 ACM International Symposium Symbolic Algebraic Computer. pp. 237–244. Association for Computing Machinery, New York (2017). http://users.cs.duke.edu/~elk27/bibliography/17/KPSW17.pdf

  9. Kaltofen, E., Yang, Z.: Sparse multivariate function recovery from values with noise and outlier errors. In: Kauers, M. (ed.) ISSAC 2013 Proceedings of 38th International Symposium Symbolic Algebraic Computer. pp. 219–226. Association for Computing Machinery, New York (2013). http://users.cs.duke.edu/~elk27/bibliography/13/KaYa13.pdf EKbib/13/KaYa13.pdf

  10. Kaltofen, E., Yang, Z.: Sparse multivariate function recovery with a high error rate in evaluations. In: Nabeshima, K. (ed.) ISSAC 2014 Proceedings of 39th International Symposium Symbolic Algebraic Computer pp. 280–287. Association for Computing Machinery, New York (2014) http://users.cs.duke.edu/~elk27/bibliography/14/KaYa14.pdf

  11. Kopparty, S.: Some remarks on multiplicity codes. In: Barg, A., Musin, O.R. (eds.) Discrete Geometry and Algebraic Combinatorics: AMS Spec. Session. Contemporary Mathematics, vol. 625, pp. 155–176 (2014)

    Google Scholar 

  12. Kopparty, S.: List-decoding multiplicity codes. Theor. Comput. 11(1), 149–182 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kopparty, S., Saraf, S., Yekhanin, S.: High-rate codes with sublinear-time decoding. J. ACM (JACM) 61(5), 1–20 (2014)

    Article  MathSciNet  Google Scholar 

  14. Moenck, R.T.: Fast computation of GCDs. In: Proceedings of 5th ACM Symposium Theory Computing pp. 142–151 (1973)

    Google Scholar 

  15. Nielsen, R.R.: List decoding of linear block codes. Ph.D. thesis, Technical University of Denmark (2001)

    Google Scholar 

  16. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)

    Article  MathSciNet  Google Scholar 

  17. Rosenbloom, M.Y., Tsfasman, M.A.: Codes for the \(m\)-metric. Problemy Peredachi Informatsii 33(1), 55–63 (1997)

    MathSciNet  Google Scholar 

  18. Schoenberg, I.J.: On Hermite-Birkhoff interpolation. J. Math. Anal. Appl. 16, 538–543 (1967). https://doi.org/10.1016/0022-247X(66)90160-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: A method for solving key equation for decoding Goppa codes. Inf. Control 27(1), 87–99 (1975)

    Article  MathSciNet  Google Scholar 

  20. Warner, D.D.: Hermite interpolation with rational functions. Ph.D. thesis, University of California, San Diego (1974)

    Google Scholar 

  21. Welch, L.R., Berlekamp, E.R.: Error correction of algebraic block codes. US Patent 4,633,470 (1986). http://patft.uspto.gov/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Yang .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Notation (in alphabetic order):

\(\hat{a}_{i,j}\)

the input value for the j-th derivative of f, or an error, at the i-th point

\(\widehat{A}_{i,*}\)

\(=[\hat{a}_{i,0},\ldots ,\hat{a}_{i,\ell _i}]\), the row vector of values for the i-th point \(\xi _i\)

\(\widehat{A}\)

\(=[\widehat{A}_{1,*},\ldots ,\widehat{A}_{n,*}]^T\), the collection of all input values

\(\hat{b}_{i,j}\)

\(=\sum _{\tau =0}^j \left( {\begin{array}{c}j\\ \tau \end{array}}\right) \hat{a}_{i,\tau } P_{\infty }^{(j-\tau )}(\xi _i)\)the value for the j-th derivative of H at the i-th point

\(\beta \)

the minimal integer such that there are \(\ge D+1+2E+2\beta E\) values for derivatives of order \(\le \beta \)

\(c_j\)

the coefficient of \(x^j\) in f

\(D\)

an upper bound of the degree of the polynomial interpolant

\(D_f\)

an upper bound of the degree of the numerator of the rational interpolant

\(D_g\)

an upper bound of the degree of the denominator interpolant

\(\delta _\kappa \)

\(=\ell _{\lambda _\kappa } + 1 - \min \{\,j\mid \hat{a}_{\lambda _\kappa ,j} \text { is an error} \}\)

E

an upper bound on the number of errors in the input values to the algorithm

\(\xi _i\)

the i-th interpolation point

\(\xi _{\lambda _\kappa }\)

\(1 \le \kappa \le k\), are the points with erroneous values, namely, \(\exists j\) s.t. \(\hat{a}_{\lambda _\kappa ,j}\) is an error

\(\epsilon _\kappa \)

\( = \min \{\,j\mid \hat{a}_{\lambda _\kappa ,j} \text { is an error} \} = \ell _{\lambda _\kappa } + 1 -\delta _\kappa \)

\(f\)

polynomial interpolant or numerator of the rational interpolant for the correct values

\(g\)

the denominator of the rational interpolant for the correct values

\(\bar{g}\)

a factor of \(g\) indicating true non-poles

\(g_{\infty }\)

a factor of \(g\) indicating true poles

H

the polynomial Hermite interpolant for all input values (including \(\le E\) errors)

\(I_{\infty }\)

\(= \{i\mid \exists j \text { s.t. } \hat{a}_{i,j} = \infty \}\)

k

the actual number of points with erroneous input values

\(\mathsf {K}\)

a field

\(\ell _i\)

the highest derivative order at the i-th point

\(\varLambda \)

the error locator polynomial

\({\bar{\varLambda }}\)

\( = \prod _{\kappa \in \{1,\ldots ,k\}, \lambda _\kappa \notin I_{\infty }} (x-\xi _{\lambda _\kappa })^{\delta _\kappa }\)

\(\varLambda _{\infty }\)

\( = \prod _{\kappa \in \{1,\ldots ,k\}, \lambda _\kappa \in I_{\infty }}(x-\xi _{\lambda _\kappa })\)

\(m_j\)

the number of input values for the j-th derivative of f

\(M_j\)

the number of input values for up to the j-th derivative of f

\(n\)

the number of distinct points

\(n_\infty \)

degree of \(P_\infty \)

\(N\)

the number of the input values

\(P_{\infty }\)

\(=\prod _{\exists j \text { s.t. } \hat{a}_{i,j} = \infty }(x-\xi _i) \), the polynomial indicating all poles

\(r_0\)

\(=(x-\xi _1)^{\ell _1+1}\cdots (x-\xi _n)^{\ell _{n}+1}\)

\(r_\gamma \)

the \(\gamma \)-th remainder of the Euclidean polynomial remainder sequence \(r_0, r_1, \ldots \)

\(s_\gamma \)

the Bézout coefficient of \(r_1\) in the \(\gamma \)-th extended Euclidean scheme: \(s_\gamma r_1 + t_\gamma r_0 =r_\gamma \)

\(t_\gamma \)

the Bézout coefficient of \(r_0\) in the \(\gamma \)-th extended Euclidean scheme: \(s_\gamma r_1 + t_\gamma r_0 =r_\gamma \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaltofen, E.L., Pernet, C., Yang, ZH. (2020). Hermite Rational Function Interpolation with Error Correction. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics