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Introduction

Linearization

We consider ODEs of the form:

y (n) = f (x , y , y ′, . . . , y (n−1)) , n ≥ 3 (1)

We want to know if Eq. (1) is linearizable through some contact
transformation.

y (n) = f (x , y , y ′, . . . , y (n−1))

��
u(n)(t) +

∑n−1
k=0 ak (t)u(k)(t) = 0
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Introduction

Point transformation (PT)

Point transformation (PT) is an analytical diffeomorphism:

t = t(x , y) ,u = u(x , y) , txuy − ty ux 6= 0.

t =
√

x ,u = y , x 6= 0.

y ′′′ + 3y ′′/(2x) = 0

��
u′′′ = 0
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Introduction

Contact transformation (CT)
Add one more variable p = y ′(x) in PT:

X = X (x , y ,p) ,Y = Y (x , y ,p) ,P = Y ′(X ) = Yp/Xp.

The last expression is coming from Yp = (Y (X ))p = XpY ′(X ).
Another expression for P is from total differentiation

P = Y ′(X ) = DxY/DxX = (Yx + pYy + p′Yp)/(Xx + pXy + p′Xp).

Thus Xp(Yx + pYy ) = Yp(Xx + pXy ) is also required in a CT to equate above
two expressions.
And the nonsingularity of Jacobian can be simplified as
(PXy − Yy )((Px + pPy )Xp − (Xx + pXy )Pp) 6= 0.

X = p ,Y = xp − y ,P = x .

y ′′′ − 3y ′′2/(2y ′) = 0

��
Y ′′′ + 3Y ′′/(2X ) = 0
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Symmetry theory

Contact symmetry

Let (X ,Y ,P) = Tα(x , y ,p) = T (x , y ,p, α) be a CT with a parameter α, which
maps y (n) = f (x , y , y ′, . . . , y (n−1)) to itself for all possible values of α. Further,
T also satisfies:

Tα+β = Tα ◦ Tβ ,T0(x , y ,p) = (x , y ,p).

Definition.

1) Let (a(x , y ,p),b(x , y ,p), c(x , y ,p)) = ∂
∂αT (x , y ,p, α)|α=0, we call the

vector field X := a ∂x + b ∂y + c ∂p a contact symmetry generator associated
with T ;

2) All possible generators form a Lie algebra under Lie bracket
[X1,X2] = X1X2 −X2X1, we call it the contact symmetry algebra of Eq. (1).
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Main result of the paper

Main result of the paper

In this paper, we provide a sufficient and necessary condition for the contact
linearizability of Eq. (1)

y (n) = f (x , y , y ′, . . . , y (n−1)) , n ≥ 3.

Moreover, if Eq. (1) is linearizable through some CT, we algorithmically
construct a determining system for all possible CTs (i.e. PDEs for X (x , y ,p)
and Y (x , y ,p)).
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Main result of the paper

Main theorem

Let L be the contact symmetry algebra of Eq. (1) and m = dim(L), our main
theorem is:

Main theorem.
Eq. (1) with n ≥ 3 is linearizable by a contact transformation if and only if
one of the following conditions is fulfilled:

1 n = 3,m = 10 or n ≥ 4,m = n + 4 [Lie,1883a/1883b],
2 n ≥ 3 , m = n + 1 or n + 2 and the derived algebra DA = [L,L] is abelian

of dimension n.
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Algorithms and examples

Linearization test

1 Input: q =Eq. (1);
2 n :=DifferentialOrder (q);
3 DS := DeterminingSystem (q) (i.e. PDEs of a,b, c);
4 L := LieSymmetryAlgebra (DS);
5 m := dim(L);
6 if (n = 3 ∧m = 10) ∨ (n > 3 ∧m = n + 4) then
7 return TRUE;
8 else if n ≥ 3 ∧ (m = n + 1 ∨m = n + 2) then
9 DA := DerivedAlgebra (L);
10 if DA is abelian and dim(DA) = n then
11 return TRUE;
12 end if
13 end if
14 return FALSE.
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Algorithms and examples

Bluman-Kumei equations

Assume that a CT (X ,Y ,P) = T (x , y ,p) maps Eq. (1) to:

Y (n) = F (X ,Y ,Y ′, . . . ,Y (n−1)) (2)

Then T induces an isomorphism between their contact symmetry algebras,

T : a ∂x + b ∂y + c ∂p 7→ A ∂X + B ∂Y + C ∂P ,

which is expressed as B-K equations:

a(x , y ,p)Xx + b(x , y ,p)Xy + c(x , y ,p)Xp = A(x , y ,p) ,

a(x , y ,p)Yx + b(x , y ,p)Yy + c(x , y ,p)Yp = B(x , y ,p) ,

a(x , y ,p)Px + b(x , y ,p)Py + c(x , y ,p)Pp = C(x , y ,p) .

Remark: In B-K equations, new symmetry (A,B,C) is expressed in old
variables.
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Algorithms and examples

Algorithm for determining system of CT

Assume that Eq. (1) belongs to the 2nd case in our main theorem and Eq. (2)
is linear.

Main theorem.
Eq. (1) with n ≥ 3 is linearizable by a contact transformation if and only if
one of the following conditions is fulfilled:

1 n = 3,m = 10 or n ≥ 4,m = n + 4 [Lie,1883a/1883b],
2 n ≥ 3 , m = n + 1 or n + 2 and the derived algebra DA = [L,L] is abelian

of dimension n.

The derived algebra of Eq. (2) has a very simple structure:

DA2 = {(A,B,C) = (0, f (X ), f ′(X )) : f (X ) is a solution of Eq. (2)}.
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Algorithms and examples

Algorithm for determining system of CT

Since B(x , y ,p) is a function of X in DA2, combined with B-K equations we
have the following algorithm:

1 Input: q =Eq. (1);
2 DS := DeterminingSystem (q);
3 L := LieSymmetryAlgebra (DS);
4 DA := DerivedAlgebra (L);
5 In B-K equations set S := {A = 0 , Bx

Xx
=

By
Xy

=
Bp
Xp
};

6 Reduce S by the system of DA;
7 Vanish all the coefficients of parametric derivatives in S, denoted by Sys;
8 Output Sys = Sys ∪ {Xp(Yx + pYy ) = Yp(Xx + pXy )}.
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Algorithms and examples

Example

Let us consider

− 16y ′2y ′′y (4) + 48y ′2y ′′′2 + y ′y ′′5x − 48y ′y ′′2y ′′′ − y ′′5y + 12y ′′4 = 0 (3)

This example passes our linearization test with dimension m = 6. It requires
also the computation of the derived algebra which is 4-dimensional and
abelian. Our second algorithm gives the system of differential equations and
inequations

{Xx = 0,Xy = 0,Yxx = 0,Yxy = 0,Yx + pYy = 0}, {Xp 6= 0,Yp 6= 0,Yx 6= 0}

which forms basis of linearizing mappings of Eq. (3).
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Algorithms and examples

Example

Illustration.

DA = {bppp =
4bp − 16pbpp + pb − p2a

16p2 ,ap =
bp

p
,ax = bx = ay = by = c = 0}

ParaDriv = {a ,b ,bp ,bpp}

S = {aXx + bXy = 0 ,
aYxx + bYxy

Xx
=

aYxy + bYyy

Xy
=

Bp

Xp
} mod DA

Sys = {Xx = 0,Xy = 0,Yxx = 0,Yxy = 0,Yx + pYy = 0}

Remark: Here we write Bx
Xx

=
By
Xy

=
Bp
Xp

only for conciseness, but in our code
they are 3 determinents without any denominators.
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Conclusions

Conclusions

We constructed a new algebraic linearization test for ODEs by contact
transformation.
Moreover, we find a way to algorithmically construct the determining
system for linearizing CTs of linearizable ODEs.
For cases m = n + 1,n + 2, our algorithm works efficiently.
For cases n = 3,m = 10 or n ≥ 4,m = n + 4, we still have an algorithm
for linearizing CTs. But it is not as practical as the 2nd algorithm since
there are fewer useful properties in their derived algebras.
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