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Abstract

Motivated by problems arising with the symbolic analysis of steady state ideals in Chem-
ical Reaction Network Theory, we consider the problem of testing whether the points in a
complex or real variety with non-zero coordinates form a coset of a multiplicative group.
That property corresponds to Shifted Toricity, a recent generalization of toricity of the cor-
responding polynomial ideal. The key idea is to take a geometric view on varieties rather
than an algebraic view on ideals. Recently, corresponding coset tests have been proposed
for complex and for real varieties. The former combine numerous techniques from commu-
tative algorithmic algebra with Gröbner bases as the central algorithmic tool. The latter
are based on interpreted first-order logic in real closed fields with real quantifier elimination
techniques on the algorithmic side. Here we take a new logic approach to both theories,
complex and real, and beyond. Besides alternative algorithms, our approach provides a
unified view on theories of fields and helps to understand the relevance and interconnection
of the rich existing literature in the area, which has been focusing on complex numbers,
while from a scientific point of view the (positive) real numbers are clearly the relevant
domain in chemical reaction network theory. We apply prototypical implementations of
our new approach to a set of 129 models from the BioModels repository.

1 Introduction
We are interested in situations where the points with non-zero coordinates in a given complex
or real variety form a multiplicative group or, more generally, a coset of such a group. For
irreducible varieties this corresponds to toricity [23, 16] and shifted toricity [28, 27], respectively,
of both the varieties and the corresponding ideals.
While toric varieties are well established and have an important role in algebraic geometry

[23, 16], our principal motivation here to study generalizations of toricity comes from the sciences,
specifically chemical reaction networks such as the following model of the kinetics of intra- and
intermolecular zymogen activation with formation of an enzyme-zymogen complex [22], which
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can also be found as model no. 921 in the BioModels database [9]:

Z 0.004 P + E

Z + E 1000
2.1E-4 E Z 5.4E-4 P + 2E

Here Z stands for zymogen, P is a peptide, E is an enzyme, E—Z is the enzyme substrate complex
formed from that enzyme and zymogen. The reactions are labelled with reaction rate constants.

Let x1, . . . , x4 : R→ R denote the concentrations over time of the species Z, P, E, E–Z, respec-
tively. Assuming mass action kinetics one can derive reaction rates and furthermore a system of
autonomous ordinary differential equations describing the development of concentrations in the
overall network [20, Section 2.1.2]:

ẋ1 = p1/100000, p1 = −100000000x1x2 − 400x1 + 21x4,

ẋ3 = p3/50000, p2 = −100000000x1x2 + 400x1 + 129x4,

ẋ2 = p2/100000, p3 = 200x1 + 27x4,

ẋ4 = p4/4000, p4 = 4000000x1x2 − 3x4.

The chemical reaction is in equilibrium for positive concentrations of species lying in the real
variety of the steady state ideal

〈p1, . . . , p4〉 ⊆ Z[x1, . . . , x4],

intersected with the first orthant of R4.
Historically, the principle of detailed balancing has attracted considerable attention in the

sciences. It states that at equilibrium every single reaction must be in equilibrium with its
reverse reaction. Detailed balancing was used by Boltzmann in 1872 in order to prove his H-
theorem [4], by Einstein in 1916 for his quantum theory of emission and absorption of radiation
[15], and by Wegscheider [50] and Onsager [42] in the context of chemical kinetics, which lead
to Onsager’s Nobel prize in Chemistry in 1968. In the field of symbolic computation, Grigoriev
and Weber [29] applied results on binomial varieties to study reversible chemical reactions in the
case of detailed balancing.
In particular with the assumption of irreversible reactions, like in our example, detailed bal-

ancing has been generalized to complex balancing [19, 20, 33], which has widely been used in
the context of chemical reaction networks. Here one considers complexes, like Z, P + E, Z + E,
etc. in our example, and requires for every such complex that the sum of the reaction rates of
its inbound reactions equals the sum of the reaction rates of its outbound reactions.
Craciun et al. [11] showed that toric dynamical systems [18, 33], in turn, generalize complex

balancing. The generalization of the principle of complex balancing to toric dynamical systems
has obtained considerable attention in the last years [44, 24, 11, 40]. Millan, Dickenstein and
Shiu in [44] considered steady state ideals with binomial generators. They presented a sufficient
linear algebra condition on the stoichiometry matrix of a chemical reaction network in order to
test whether the steady state ideal has binomial generators. Conradi and Kahle showed that the
sufficient condition is even equivalent when the ideal is homogenous [10, 35, 34]. That condition
also led to the introduction of MESSI systems [43]. Recently, binomiality of steady states ideals
was used to infer network structure of chemical reaction networks out of measurement data [49].
Besides its scientific adequacy as a generalization of complex balancing there are practical

motivations for studying toricity. Relevant models are typically quite large. For instance, with
our comprehensive computations in this article we will encounter one system with 90 polynomials

1https://www.ebi.ac.uk/compneur-srv/biomodels-main/publ-model.do?mid=BIOMD0000000092
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in dimension 71. This brings symbolic computation to its limits. Our best hope is to discover
systematic occurrences of specific structural properties in the models coming from a specific
context, e.g. the life sciences, and to exploit those structural properties towards more efficient
algorithms. In that course, toricity could admit tools from toric geometry, e.g., for dimension
reduction.
Detecting toricity of varieties in general, and of steady state varieties of chemical reaction

networks in particular, is a difficult problem. The first issue in this regard is finding suitable
notions to describe the structure of the steady states. Existing work, such as the publications
mentioned above, typically focuses on the complex numbers and addresses algebraic properties
of the steady state ideal, e.g., the existence of binomial Gröbner bases. Only recently, a group
of researchers including the authors of this article have taken a geometric approach, focusing on
varieties rather than ideals [27, 28]. Besides irreducibility, the characteristic property for varieties
V to be toric over a field K is that V ∩ (K∗)n forms a multiplicative group. More generally, one
considers shifted toricity, where V ∩ (K∗)n forms a coset of a multiplicative group.
It is important to understand that chemical reaction network theory generally takes place

in the interior of the first orthant of Rn, i.e., all species concentrations and reaction rates are
assumed to be strictly positive [20]. Considering (C∗)n in contrast to Cn resembles the strictness
condition, and considering also (R∗)n in [27] was another step in the right direction.
The plan of the article is as follows. In Section 2 we motivate and formally introduce first-

order characterizations for shifted toricity, which have been used already in [27], but exclusively
with real quantifier elimination methods. In Section 3 we put a model theoretic basis and prove
transfer principles for our characterizations throughout various classes of fields, with zero as well
as with positive characteristics. In Section 4 we employ Hilbert’s Nullstellensatz as a decision
procedure for uniform word problems and use logic tests also over algebraically closed fields. This
makes the link between the successful logic approach from [27] and the comprehensive existing
literature cited above. Section 5 clarifies some asymptotic worst-case complexities for the sake of
scientific rigor. In Section 6 it turns out that for a comprehensive benchmark set of 129 models
from the BioModels database [9] quite simple and maintainable code, requiring only functionality
available in most decent computer algebra systems and libraries, can essentially compete with
highly specialized and more complicated purely algebraic methods. This motivates in Section 7
a perspective that our symbolic computation approach has a potential to be interesting for
researchers in the life sciences, with communities much larger than our own, with challenging
applications, not least in the health sector.

2 Syntax: First-Order Formulations of Group and Coset
Properties

In this section we set up our first-order logic framework. We are going to use interpreted first-
order logic with equality over the signature L = (0, 1,+,−, ·) of rings.

For any field K we denote its multiplicative group K \ {0} by K∗. For a coefficient ring Z ⊆ K
and F ⊆ Z[x1, . . . , xn] we denote by VK(F ), or shortly V (F ), the variety of F over K. Our
signature L naturally induces coefficient rings rings Z = Z/p for finite characteristic p, and
Z = Z for characteristic 0. We define V (F )∗ = V (F ) ∩ (K∗)n ⊆ (K∗)n. Note that the direct
product (K∗)n establishes again a multiplicative group.
Let F = {f1, . . . , fm} ⊆ Z[x1, . . . , xn]. The following semi-formal conditions state that V (F )∗

establishes a coset of a multiplicative subgroup of (K∗)n:

∀g, x ∈ (K∗)n: g ∈ V (F ) ∧ gx ∈ V (F )⇒ gx−1 ∈ V (F ) (1)
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∀g, x, y ∈ (K∗)n: g ∈ V (F ) ∧ gx ∈ V (F ) ∧ gy ∈ V (F )⇒ gxy ∈ V (F ) (2)

V (F ) ∩ (K∗)n 6= ∅. (3)

If we replace (3) with the stronger condition

1 ∈ V (F ), (4)

then V (F )∗ establishes even a multiplicative subgroup of (K∗)n. We allow ourselves to less
formally say that V (F )∗ is a coset or group over K, respectively.
Denote M = {1, . . . ,m}, N = {1, . . . , n}, and for (i, j) ∈ M × N let dij = degxj (fi). We

shortly write x = (x1, . . . , xn), y = (y1, . . . , yn), g = (g1, . . . , gn). Multiplication between x, y, g
is coordinate-wise, and xdi = xdi11 · · ·xdinn . As a first-order L-sentence, condition (1) yields

ι =̇ ∀g1 . . . ∀gn∀x1 . . . ∀xn
(

n∧
j=1

gj 6= 0 ∧
n∧
j=1

xj 6= 0 ∧

m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0 −→
m∧
i=1

xdifi(g1x
−1
1 , . . . , gnx

−1
n ) = 0

)
.

Here the multiplications with xdi drop the principal denominators from fi(g1x
−1
1 , . . . , gnx

−1
n ).

This is an equivalence transformation, because the left hand side of the implication constrains
x1, . . . , xn to be different from zero.

Similarly, condition (2) yields a first-order L-sentence

µ =̇ ∀g1 . . . ∀gn∀x1 . . . ∀xn∀y1 . . . ∀yn
(

n∧
j=1

gj 6= 0 ∧
n∧
j=1

xj 6= 0 ∧
n∧
j=1

yj 6= 0 ∧

m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0 ∧
m∧
i=1

fi(g1y1, . . . , gnyn) = 0

−→
m∧
i=1

fi(g1x1y1, . . . , gnxnyn) = 0
)
.

For condition (3) we consider its logical negation V (F ) ∩ (K∗)n = ∅, which gives us an L-
sentence

η =̇ ∀x1 . . . ∀xn
(
m∧
i=1

fi = 0 −→
n∨
j=1

xj = 0
)
.

Accordingly, the L-sentence ¬η formally states (3).
Finally, condition (4) yields a quantifier-free L-sentence

γ =̇
m∧
i=1

fi(1, . . . , 1) = 0.

3 Semantics: Validity of Our First-Order Formulations over
Various Fields

Let p ∈ N be 0 or prime. We consider the L-model classes Kp of fields of characteristic p and
Ap ⊆ Kp of algebraically closed fields of characteristic p. Recall that Ap is complete, decidable,
and admits effective quantifier elimination [48, Note 16].
We assume without loss of generality that L-sentences are in prenex normal formQ1x1 . . . Qnxnψ

with Q1, . . . , Qn ∈ {∃,∀} and ψ quantifier-free. An L-sentence is called universal if it is of the
form ∀x1 . . . ∀xnψ and existential if it is of the form ∃x1 . . . ∃xnψ with ψ quantifier-free. A
quantifier-free L-sentence is both universal and existential.
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Lemma 1. Let ϕ be a universal L-sentence. Then

Kp |= ϕ if and only if Ap |= ϕ.

Proof. The implication from the left to the right immediately follows from Ap ⊆ Kp. Assume,
vice versa, that Ap |= ϕ, and let K ∈ Kp. Then K has an algebraic closure K ∈ Ap, and K |= ϕ
due to the completeness of Ap. Since K ⊆ K and ϕ as a universal sentence is persistent under
substructures, we obtain K |= ϕ.

All our first-order conditions ι, µ, η, and γ introduced in the previous section 2 are universal
L-sentences. Accordingly, ¬η is equivalent to an existential L-sentence.

In accordance with the our language L we are going to use polynomial coefficient rings Zp =
Z/p for finite characteristic p, and Z0 = Z. Let F ⊆ Zp[x1, . . . , xn]. Then V (F )∗ is a coset over
K ∈ Kp if and only if

K |= ι ∧ µ ∧ ¬η. (5)

Especially, V (F )∗ is a group over K if even

K |= ι ∧ µ ∧ γ, (6)

where γ entails ¬η.

Proposition 2. Let F ⊆ Zp[x1, . . . , xn], and let K ∈ Kp. Then V (F )∗ is a group over K if and
only if at least one of the following conditions holds:

(a) K′ |= ι ∧ µ ∧ γ for some K ⊆ K′ ∈ Kp;

(b) K′ |= ι ∧ µ ∧ γ for some K′ ∈ Ap.

Proof. Recall that V (F )∗ is a group over K if and only if K |= ι ∧ µ ∧ γ. If V (F )∗ is a group
over K, then (a) holds for K′ = K. Vice versa, there are two cases. In case (a), we can conclude
that K |= ι ∧ µ ∧ γ because the universal sentence ι ∧ µ ∧ γ is persistent under substructures. In
case (b), we have Ap |= ι ∧ µ ∧ γ by the completeness of that model class. Using Lemma 1 we
obtain Kp |= ι ∧ µ ∧ γ, in particular K |= ι ∧ µ ∧ γ.

Example 3. (i) Assume that V (F )∗ is a group over C. Then V (F )∗ is a group over any
field of characteristic 0. Alternatively, it suffices that V (F )∗ is a group over the countable
algebraic closure Q of Q.

(ii) Assume that V (F )∗ is a group over the countable field of real algebraic numbers, which is
not algebraically closed. Then again V (F )∗ is a group over any field of characteristic 0.

(iii) Let ε be a positive infinitesimal, and assume that V (F )∗ is a group over R(ε). Then V (F )∗
is group also over Q and R, but not necessarily over Q. Notice that R(ε) is not algebraically
closed.

(iv) Assume that V (F )∗ is a group over the algebraic closure of Fp. Then V (F )∗ is a group
over any field of characteristic p. Alternatively, it suffices that V (F )∗ is a group over the
algebraic closure of the rational function field Fp(t), which has been studied with respect
to effective computations [36].

Proposition 4. Let F ⊆ Zp[x1, . . . , xn] and let K ∈ Kp. Then V (F )∗ is a coset over K if and
only if K |= ¬η and at least one of the following conditions holds:

(a) K′ |= ι ∧ µ for some K ⊆ K′ ∈ Kp;
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(b) K′ |= ι ∧ µ for some K′ ∈ Ap.

Proof. Recall that V (F )∗ is a coset over K if and only if K |= ι ∧ µ ∧ ¬η. If V (F )∗ is a coset
over K, then K |= ¬η, and (a) holds for K′ = K. Vice versa, we require that K |= ¬η and obtain
K |= ι ∧ µ analogously to the proof of Proposition 2.

Example 5. (i) Assume that V (F )∗ is a coset over C. Then V (F )∗ is a coset over R if and
only if V (F )∗ 6= ∅ over R. This is the case for F = {x2 − 2} but not for F = {x2 + 2}.

(ii) Consider F = {x4 − 4} = {(x2 − 2)(x2 + 2)}. Then over R, V (F )∗ = {±
√

2} is a coset,
because V (F )∗/

√
2 = {±1} is a group. Similarly over C, V (F )∗ = {±

√
2,±i

√
2} is a coset,

as V (F )∗/
√

2 = {±1,±i} is a group.

(iii) Consider F = {x4 + x2 − 6} = {(x2 − 2)(x2 + 3)}. Then over R, V (F )∗ = {±
√

2} is a
coset, as V (F )∗/

√
2 = {±1} is a group. Over C, in contrast, V (F )∗ = {±

√
2,±i

√
3} is not

a coset.

4 Hilbert’s Nullstellensatz as a Swiss Army Knife
A recent publication [27] has systematically applied coset tests to a large number for real-world
models from the BioModels database [9], investigating varieties over both the real and the com-
plex numbers. Over R it used essentially our first-order sentences presented in Section 2 and
applied efficient implementations of real decision methods based on effective quantifier elimina-
tion [51, 52, 13, 14, 45, 38].
Over C, in contrast, it used a purely algebraic framework combining various specialized meth-

ods from commutative algebra, typically based on Gröbner basis computations [8, 17]. This
is in line with the vast majority of the existing literature (cf. the Introduction for references),
which uses computer algebra over algebraically closed fields, to some extent supplemented with
heuristic tests based on linear algebra.
Generalizing the successful approach for R and aiming at a more uniform overall framework,

we want to study here the application of decision methods for algebraically closed fields to our
first-order sentences. Recall that our sentences ι, µ, η, and γ are universal L-sentences. Every
such sentence ϕ can be equivalently transformed into a finite conjunction of universal L-sentences
of the following form:

ϕ̂ =̇ ∀x1 . . . ∀xn
(
m∧
i=1

fi(x1, . . . , xn) = 0 −→ g(x1, . . . , xn) = 0
)
,

where f1, . . . , fm, g ∈ Zp[x1, . . . , xn]. Such L-sentences are called uniform word problems [3].
Over an algebraically closed field K̄ of characteristic p, Hilbert’s Nullstellensatz [31] provides a
decision procedure for uniform word problems. It states that

K̄ |= ϕ̂ if and only if g ∈
√
〈f1, . . . , fm〉.

Recall that Ap is complete so that we furthermore have Ap |= ϕ̂ if and only if K̄ |= ϕ̂.
Our L-sentence ι for condition (1) can be equivalently transformed into

∀g1 . . . ∀gn∀x1 . . . ∀xn
(

n∨
j=1

gj = 0 ∨
n∨
j=1

xj = 0 ∨

m∨
i=1

fi(g1, . . . , gn) 6= 0 ∨
m∨
i=1

fi(g1x1, . . . , gnxn) 6= 0 ∨
m∧
i=1

xdifi(g1x
−1
1 , . . . , gnx

−1
n ) = 0

)
,
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which is in turn equivalent to

ι̂ =̇
m∧
k=1
∀g1 . . . ∀gn∀x1 . . . ∀xn

(
m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0

−→ xdkfk(g1x
−1
1 , . . . , gnx

−1
n )

n∏
j=1

gjxj = 0
)
.

Hence, by Hilbert’s Nullstellensatz, (1) holds in K̄ if and only if

xdkfk(g1x
−1
1 , . . . , gnx

−1
n )

n∏
j=1

gjxj ∈ R1 for all k ∈M, (7)

where R1 =
√
〈 fi(g1, . . . , gn), fi(g1x1, . . . , gnxn) | i ∈M 〉.

Similarly, our L-sentence µ for condition (2) translates into

µ̂ =̇
m∧
k=1
∀g1 . . . ∀gn∀x1 . . . ∀xn∀y1 . . . ∀yn(

m∧
i=1

fi(g1, . . . , gn) = 0 ∧
m∧
i=1

fi(g1x1, . . . , gnxn) = 0 ∧
m∧
i=1

fi(g1y1, . . . , gnyn) = 0

−→ fk(g1x1y1, . . . , gnxnyn)
n∏
j=1

gjxjyj = 0
)
.

Again, by Hilbert’s Nullstellensatz, (2) holds in K̄ if and only if

fk(g1x1y1, . . . , gnxnyn)
n∏
j=1

gjxjyj ∈ R2 for all k ∈M, (8)

where R2 =
√
〈 fi(g), fi(gx), fi(gy) | i ∈M 〉.

Next, our L-sentence η is is equivalent to

η̂ =̇ ∀x1 . . . ∀xn
(

m∧
i=1

fi = 0 −→
n∏
j=1

xj = 0
)
.

Using once more Hilbert’s Nullstellensatz, K̄ |= η̂ if and only if
n∏
j=1

xj ∈ R3, (9)

where R3 =
√
〈f1, . . . , fm〉. Hence our non-emptiness condition (3) holds in K̄ if and only if

n∏
j=1

xj /∈ R3. (10)

Finally, our L-sentence γ for condition (4) is equivalent to

γ̂ =̇
m∧
k=1

(
0 = 0 −→ fk(1, . . . , 1) = 0

)
.

Here Hilbert’s Nullstellensatz tells us that condition (4) holds in K̄ if and only if

fk(1, . . . , 1) ∈ R4 for all k ∈M, (11)

where R4 =
√
〈0〉 = 〈0〉. Notice that the radical membership test quite naturally reduces to the

obvious test with plugging in.
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5 Complexity
Let us briefly discuss asymptotic complexity bounds around problems and methods addressed
here. We do so very roughly, in terms of the input word length. The cited literature provides
more precise bounds in terms of several complexity parameters, such as numbers of quantifiers,
or degrees.
The decision problem for algebraically closed fields is double exponential [30] in general, but

only single exponential when the number of quantifier alternations is bounded [25], which cov-
ers in particular our universal formulas. The decision problem for real closed fields is double
exponential as well [12], even for linear problems [51]; again it becomes single exponential when
bounding the number of quantifier alternations [26].
Ideal membership tests are at least double exponential [39], and it was widely believed that this

would impose a corresponding lower bound also for any algorithm for Hilbert’s Nullstellensatz.
Quite surprisingly, it turned out that there are indeed single exponential such algorithms [7, 37].
On these grounds it is clear that our coset tests addressed in the previous sections can be solved

in single exponential time for algebraically closed fields as well as for real closed fields. Recall
that our considering those tests is actually motivated by our interest in shifted toricity, which
requires, in addition, the irreducibility of the considered variety over the considered domain.
Recently it has been shown that testing shifted toricity, including irreducibility, is also only
single exponential over algebraically closed fields as well as real closed fields [27].
Most asymptotically fast algorithms mentioned above are not implemented and it is not clear

that they would be efficient in practice.

6 Computational Experiments
We have studied 129 models from the BioModels2 database [9]. Technically, we took our input
from ODEbase3 which provides preprocessed versions for symbolic computation. Our 129 models
establish the complete set currently provided by ODEbase for wich the relevant systems of
ordinary differential equations have polynomial vector fields.
We limited ourselves to characteristic 0 and applied the tests (7), (8), (9), (11) derived in

Section 4 using Hilbert’s Nullstellensatz. Recall that those tests correspond to ι, µ, η, γ from
Section 3, respectively, and that one needs ι∧µ∧¬η or ι∧µ∧γ for cosets or groups, respectively.
From a symbolic computation point of view, we used exclusively polynomial arithmetic and
radical membership test. The complete Maple code for computing a single model is displayed in
Figure 1; it is surprisingly simple.
We conducted our computations on a 2.40 GHz Intel Xeon E5-4640 with 512 GB RAM and

32 physical cores providing 64 CPUs via hyper-threading. For parallelization of the jobs for the
individual models we used GNU Parallel [47]. Results and timings are collected in Table 1. With
a time limit of one hour CPU time per model we succeeded on 78 models, corresponding to 60%,
the largest of which, no. 559, has 90 polynomials in 71 dimensions. The median of the overall
computation times for the successful models is 1.419 s. We would like to emphasize that our focus
here is illustrating and evaluating our overall approach, rather than obtaining new insights into
the models. Therefore our code in Figure 1 is very straightforward without any optimizations.
In particular, computation continues even when one relevant subtest has already failed. More
comprehensive results on our dataset can be found in [27].
Among our 78 successfully computed models, we detected 20 coset cases, corresponding to

26%. Two out of those 20 are even group cases. Among the 58 other cases, 46, corresponding

2https://www.ebi.ac.uk/biomodels/
3http://odebase.cs.uni-bonn.de/
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1ToricHilbert := proc(F: : l i s t (polynom))
2uses PolynomialIdeals ;
3
4local Iota := proc( ) : : truefalse ;
5local R1, s , prod, f ;
6R1 := < op(subs(zip( ‘=‘ , xl , gl ) , F)) , op(subs(zip ((x, g) −> x = g∗x, xl , gl ) , F)) >;
7s := zip ((x, g) −> x = g/x, xl , gl ) ;
8prod := g ∗ x;
9for f in subs(s , F) do
10i f not RadicalMembership(numer( f ) ∗ prod, R1) then
11return false
12end if
13end do;
14return true
15end proc;
16
17local Mu := proc( ) : : truefalse ;
18local R2, s , prod, f ;
19R2 := < op(subs(zip( ‘=‘ , xl , gl ) , F)) , op(subs(zip ((x, g) −> x = g∗x, xl , gl ) , F)) ,
20op(subs(zip( ‘=‘ , xl , zip ( ‘∗ ‘ , gl , yl )) , F)) >;
21s := zip( ‘=‘ , xl , zip ( ‘∗ ‘ , gl , zip ( ‘∗ ‘ , xl , yl ))) ;
22prod := g ∗ x ∗ y;
23for f in subs(s , F) do
24i f not RadicalMembership( f ∗ prod, R2) then
25return false
26end if
27end do;
28return true
29end proc;
30
31local Eta := proc( ) : : truefalse ;
32local R3, prod;
33R3 := < op(F) >;
34prod := foldl ( ‘∗ ‘ , 1 , op(xl )) ;
35return RadicalMembership(prod, R3)
36end proc;
37
38local Gamma := proc( ) : : truefalse ;
39local R4, s , f ;
40R4 := < 0 >;
41s := map(x −> x=1, xl ) ;
42for f in subs(s , F) do
43i f not RadicalMembership( f , R4) then
44return false
45end if
46end do;
47return true
48end proc;
49
50local Rename := proc(base : :name, l : : l i s t (name) ) : : l i s t (name);
51uses StringTools ;
52return map(x −> cat(base , Select(IsDigit , x)) , l )
53end proc;
54
55local X, xl , gl , yl , g , x, y, iota , t_iota , mu, t_mu, eta , t_eta , gamma_, t_gamma, coset , group, t ;
56t := time() ;
57xl := convert( indets(F) , l i s t ) ;
58x := foldl ( ‘∗ ‘ , 1 , op(xl )) ;
59gl := Rename( ’g’ , xl ) ;
60g := foldl ( ‘∗ ‘ , 1 , op( gl )) ;
61yl := Rename( ’y’ , xl ) ;
62y := foldl ( ‘∗ ‘ , 1 , op(yl )) ;
63t_iota := time() ; iota := Iota () ; t_iota := time() − t_iota ;
64t_mu := time() ; mu := Mu(); t_mu := time() − t_mu;
65t_eta := time() ; eta := Eta() ; t_eta := time() − t_eta;
66t_gamma := time() ; gamm := Gamma(); t_gamma := time() − t_gamma;
67coset := iota and mu and not eta ;
68group := iota and mu and gamm;
69t := time() − t ;
70return nops(F) , nops(xl ) , iota , t_iota , mu, t_mu, eta , t_eta , gamm, t_gamma, coset , group, t
71end proc;

Figure 1: Maple code for computing one row of Table 1
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Table 1: Results and computation times (in seconds) of our computations on models from the
BioModels database [9]

model m n ι tι µ tµ η tη γ tγ coset group tΣ
001 12 12 true 7.826 true 7.86 false 4.267 false 0.053 true false 20.007
040 5 3 false 1.415 false 0.173 false 0.114 false 0.043 false false 1.746
050 14 9 true 1.051 true 2.458 true 0.113 false 0.05 false false 3.673
052 11 6 true 3.605 true 1.635 true 0.096 false 0.059 false false 5.396
057 6 6 true 0.271 true 0.263 false 0.858 false 0.045 true false 1.438
072 7 7 true 0.763 true 0.496 true 0.08 false 0.06 false false 1.4
077 8 7 true 0.296 true 0.356 false 0.097 false 0.051 true false 0.801
080 10 10 true 0.714 true 1.341 true 0.103 false 0.06 false false 2.219
082 10 10 true 0.384 true 0.39 true 0.086 false 0.041 false false 0.902
091 16 14 true 0.031 true 0.045 true 0.003 false 0.062 false false 0.142
092 4 3 true 0.293 true 0.244 false 0.104 false 1.03 true false 1.671
099 7 7 true 0.298 true 0.698 false 0.087 false 0.036 true false 1.119
101 6 6 false 4.028 false 10.343 false 0.917 false 0.073 false false 15.361
104 6 4 true 0.667 true 0.146 true 0.084 false 0.039 false false 0.937
105 39 26 true 0.455 true 0.367 true 0.043 false 0.038 false false 0.905
125 5 5 false 0.193 false 0.098 false 0.078 false 0.038 false false 0.408
150 4 4 true 0.173 true 0.153 false 0.094 false 0.043 true false 0.464
156 3 3 true 2.638 true 0.248 false 0.86 false 0.052 true false 3.8
158 3 3 false 0.148 false 0.149 false 0.16 false 0.045 false false 0.503
159 3 3 true 0.959 true 0.175 false 0.083 false 0.04 true false 1.257
178 6 4 true 0.52 true 1.71 true 0.877 false 1.201 false false 4.308
186 11 10 true 31.785 true 1026.464 true 1.956 false 0.095 false false 1060.301
187 11 10 true 27.734 true 1023.648 true 0.103 false 0.062 false false 1051.548
188 20 10 true 0.075 true 0.079 true 0.04 false 0.047 false false 0.242
189 18 7 true 0.035 true 0.02 true 0.002 false 0.062 false false 0.12
194 5 5 false 2.338 false 1.922 false 0.612 false 0.05 false false 4.922
197 7 5 false 7.562 false 71.864 false 0.485 false 0.05 false false 79.962
198 12 9 true 0.397 true 0.793 true 0.077 false 0.042 false false 1.31
199 15 8 true 1.404 true 1.531 false 0.215 false 0.054 true false 3.205
220 58 56 true 146.146 true 534.832 true 6.921 false 0.964 false false 688.866
227 60 39 true 0.273 true 0.485 true 0.01 false 0.077 false false 0.847
229 7 7 true 1.917 true 3.348 false 0.131 false 0.062 true false 5.458
233 4 2 false 0.16 false 0.44 false 0.17 false 0.557 false false 1.328
243 23 19 true 8.598 true 1171.687 true 2.512 false 0.171 false false 1182.97
259 17 16 true 1.334 true 1.913 true 0.092 false 0.045 false false 3.385
260 17 16 true 2.182 true 0.748 true 0.079 false 0.047 false false 3.057
261 17 16 true 3.359 true 2.872 true 0.113 false 0.095 false false 6.44
262 11 9 true 0.402 true 0.41 true 0.091 false 0.071 false false 0.975
263 11 9 true 0.379 true 0.403 true 0.085 false 0.066 false false 0.934
264 14 11 true 1.031 true 2.036 true 0.136 false 0.063 false false 3.268
267 4 3 true 1.084 true 0.246 true 0.095 false 0.049 false false 1.475
271 6 4 true 0.286 true 0.283 true 0.746 false 0.045 false false 1.361
272 6 4 true 0.361 true 0.323 true 0.086 false 0.055 false false 0.826
281 32 32 true 20.987 true 29.791 true 0.602 false 0.055 false false 51.437
282 6 3 true 0.205 true 0.19 true 0.087 false 0.046 false false 0.528
283 4 3 true 0.294 true 0.211 true 0.087 false 0.412 false false 1.005
289 5 4 false 2.291 false 1.118 false 0.165 false 0.044 false false 3.619
292 6 2 true 0.06 true 0.048 true 0.063 false 0.046 false false 0.218
306 5 2 true 0.149 true 0.121 false 0.079 false 0.041 true false 0.391
307 5 2 true 0.129 true 0.121 true 0.043 false 0.148 false false 0.441
310 4 1 true 0.053 true 0.369 true 0.047 false 0.04 false false 0.509
311 4 1 true 0.076 true 0.048 true 0.224 false 0.048 false false 0.397
312 3 2 true 0.098 true 0.512 true 0.043 false 0.043 false false 0.697
314 12 10 true 0.515 true 1.789 true 0.1 false 0.059 false false 2.464
321 3 3 true 0.163 true 0.148 true 0.042 false 0.039 false false 0.393
357 9 8 true 0.353 true 1.517 true 0.07 false 0.045 false false 1.986
359 9 8 true 1.677 true 3.605 true 0.11 false 0.055 false false 5.448
360 9 8 true 0.479 true 0.47 true 0.096 false 0.05 false false 1.096
361 8 8 true 1.069 true 2.746 true 0.156 false 0.045 false false 4.017
363 4 3 true 0.244 true 0.199 true 0.077 false 0.041 false false 0.561
364 14 12 true 2.483 true 7.296 true 0.55 false 0.064 false false 10.394
413 5 5 false 1.55 false 22.323 false 0.117 false 0.053 false false 24.044
459 4 3 true 0.542 true 0.224 false 0.18 false 0.068 true false 1.014
460 4 3 false 1.025 false 0.936 false 0.143 false 0.216 false false 2.321
475 23 22 true 97.876 true 3377.021 true 0.231 false 0.062 false false 3475.192
484 2 1 true 0.384 true 0.143 false 0.099 false 0.048 true false 0.674
485 2 1 false 0.564 false 0.354 false 0.209 false 0.042 false false 1.169
486 2 2 true 0.119 true 0.106 false 0.073 false 0.041 true false 0.339
487 6 6 true 0.475 true 1.008 false 0.099 false 0.045 true false 1.628
491 57 57 true 123.138 true 536.865 false 2.067 true 0.007 true true 662.08
492 52 52 true 85.606 true 284.753 false 1.123 true 0.003 true true 371.489
519 3 3 true 1.357 true 2.367 false 5.142 false 0.097 true false 8.964
546 7 3 true 0.327 true 0.338 true 0.109 false 0.042 false false 0.817
559 90 71 true 4.742 true 7.525 true 0.19 false 0.053 false false 12.515
584 35 9 true 0.4 true 0.655 false 0.095 false 0.043 true false 1.194
619 10 8 true 0.411 true 0.443 true 0.087 false 0.052 false false 0.994
629 5 5 true 0.209 true 0.197 false 0.079 false 0.046 true false 0.532
647 11 11 false 0.854 false 16.436 false 0.165 false 0.051 false false 17.507



to 78%, fail only due to their emptiness η; we know from [27] that many such cases exhibit in
fact coset structure when considered in suitable lower-dimensional spaces, possibly after prime
decomposition. Finally notice that our example reaction from the Introduction, no. 92, is among
the smallest ones with a coset structure.

7 Conclusions and Future Work
We have used Hilbert’s Nullstellensatz to derive important information about the varieties of
biological models with a polynomial vector field F . The key technical idea was generalizing
from pure algebra to more general first-order logic. Recall from Section 3 that except for non-
emptiness of V (F )∗ the information we obtained is valid in all fields of characteristic 0. Wherever
we discovered non-emptiness, this holds at least in all algebraically closed fields of characteristic
0. For transferring our obtained results to real closed fields, e.g., subtropical methods [46, 21, 32]
provide fast heuristic tests for the non-emptiness of V (F )∗ there.
Technically, we only used polynomial arithmetic and polynomial radical membership tests.

This means that on the software side there are many off-the-shelf computer algebra systems
and libraries available where our ideas could be implemented, robustly and with little effort.
This in turn makes it attractive for the integration with software from systems biology, which
could open exciting new perspectives for symbolic computation with applications ranging from
the fundamental research in the life sciences to state-of-the-art applied research in medicine and
pharmacology.
We had motivated our use of Hilbert’s Nullstellensatz by viewing it as a decision procedure

for the universal fragment of first-order logic in algebraically closed fields, which is sufficient for
our purposes. Our focus on algebraically closed fields here is in accordance with the majority of
existing literature on toricity. However, it is generally accepted that from a scientific point of
view, real closed fields are the appropriate domain to consider.
We have seen in Section 5 that the theoretical complexities for general decision procedures in

algebraically closed fields vs. real closed fields strongly resemble each other. What could now
take the place of Hilbert’s Nullstellensatz over the reals with respect to practical computations
on model sizes as in Table 1 or even larger? A factor of 10 could put us in the realm of
models currently used in the development of drugs for diabetes or cancer. One possible answer
is satisfiability modulo theories solving (SMT) [41].4 SMT is incomplete in the sense that it
often proves or disproves validity, but it can yield “unknown” for specific input problems. When
successful, it is typically significantly faster than traditional algebraic decision procedures. For
coping with incompleteness one can still fall back into real quantifier elimination. Interest in
collaboration between the SMT and the symbolic computation communities exists on both sides
[1, 2].
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