Skip to main content

An Evolutionary Algorithm Based on Compressed Representation for Computing Weak Structural Balance in Large-Scale Signed Networks

  • Conference paper
  • First Online:
  • 1683 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12432))

Abstract

With the integration of sentimental information, signed networks have a wide range of applications. The calculation of the degree of weak unbalance, which reflects the tension between positive and negative relations, is an NP-hard problem. In this paper, an evolutionary algorithm EAWSB for computing the degree of weak unbalance is proposed, where an indirect individual representation based on compression is designed to reduce the space complexity of the algorithm. In addition, a rotation operator is proposed to increase the population diversity. Experimental results show the effectiveness and efficacy of EAWSB. A thorough comparison show that EAWSB outperforms or is comparable to other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, pp. 403–412 (2004). https://doi.org/10.1145/988672.988727

  2. Tang, J., Chang, S., Aggarwal, C., Liu, H.: Negative link prediction in social media. In: Proceedings of the 8th ACM International Conference on Web Search and Data Mining, pp. 87–96 (2015). https://doi.org/10.1145/2684822.2685295

  3. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the Sigchi Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010). https://doi.org/10.1145/1753326.1753532

  4. Chang, X., Shi, W., Zhang, F.: Signed network embedding based on noise contrastive estimation and deep learning. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019. LNCS, vol. 11817, pp. 40–46. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30952-7_5

    Chapter  Google Scholar 

  5. Tang, J., Aggarwal, C., Liu, H.: Recommendations in signed social net-works. In: The 25th International Conference on World Wide Web, pp. 31–40 (2016). https://doi.org/10.1145/2872427.2882971

  6. Alessia, A., Clara, P.: Community mining in signed networks: a multiobjective approach. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 95–99. Niagara, Canada (2013). https://doi.org/10.1109/icde.2018.00031

  7. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946). https://doi.org/10.1080/00223980.1946.9917275

    Article  Google Scholar 

  8. Dorwin, C., Frank, H.: Structure balance: a generalization of Heiders theory. Psychol. Rev. 63(5), 277–293 (1956). https://doi.org/10.1037/h0046049

    Article  Google Scholar 

  9. Davis, J.A.: Clustering and structural balance in graphs. Soc. Netw. 20(2), 27–33 (1977). https://doi.org/10.1177/001872676702000206

    Article  Google Scholar 

  10. Leskovec, J., Huttenlocher D., Kleinberg J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM (2010). https://doi.org/10.1145/1772690.1772756

  11. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A 15(10), 3241–3253 (1982). https://doi.org/10.1088/0305-4470/15/10/028

    Article  MathSciNet  Google Scholar 

  12. Sun, Y., Du, H., Gong, M., et al.: Fast computing global structural balance in signed networks based on memetic algorithm. Phys. A Stat. Mech. Appl. 415, 261–272 (2014). https://doi.org/10.1016/j.physa.2014.07.071

    Article  MathSciNet  MATH  Google Scholar 

  13. Zheng, X., Zeng, D., Wang, F.-Y.: Social balance in signed networks. Inf. Syst. Front. 17(5), 1077–1095 (2014). https://doi.org/10.1007/s10796-014-9483-8

    Article  Google Scholar 

  14. Aref, S.: Balance and frustration in signed networks under different contexts. arXiv:1712.04628v2 [cs.SI] 21 Apr (2018)

  15. Doreian, P., Mrvar, A.: A partitioning approach to structural balance. Soc. Netw. 18(2), 149–168 (1996). https://doi.org/10.1016/0378-8733(95)00259-6

    Article  Google Scholar 

  16. Doreian, P., Mrvar, A.: Partitioning signed social networks. Soc. Netw. 31(1), 1–11 (2009). https://doi.org/10.1016/j.socnet.2008.08.001

    Article  MATH  Google Scholar 

  17. Doreian, P., Mrvar, A.: Structural balance and signed international relations. J. Soc. Struct. 16, 1–49 (2015). https://doi.org/10.21307/joss-2019-012

    Article  Google Scholar 

  18. Ma, L., Gong, M., Du, H., et al.: A memetic algorithm for computing and transforming structural balance in signed networks. Knowl.-Based Syst. 85, 196–209 201 (2015). https://doi.org/10.1016/j.knosys.2015.05.006

  19. Levorato, M., Rosa, F., Yuri, F., et al.: Evaluating balancing on social networks through the efficient solution of Correlation Clustering problems. EURO Journal on Computational Optimization, Springer, Cham, 5(4), pp. 467–498 (2017). http://doi.org/10.1007/s13675-017-0082-6

  20. Michael, J.B., Patrick, D.: Partitioning signed networks using relocation heuristics, tabu search, and variable neighborhood search. Soc. Netw. 56, 70–80 (2019). https://doi.org/10.1016/j.socnet.2018.08.007

    Article  Google Scholar 

  21. David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, London (2010)

    MATH  Google Scholar 

  22. Srinivasan, A.: Local balancing influences global structure in social networks. Proc. Nat. Acad. Sci. 108, 1751–1752 (2011). https://doi.org/10.1073/pnas.1018901108

    Article  Google Scholar 

  23. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 238–247 (2002). https://doi.org/10.1109/sfcs.2002.1181947

  24. Jong, K.D.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2016)

    Google Scholar 

  25. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms. arXiv:0711.0491 [physics.soc-ph] (2007)

  26. Stanford Network Data. http://snap.stanford.edu/data/#signnets. Accessed 10 June 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingong Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, X., Zhang, F. (2020). An Evolutionary Algorithm Based on Compressed Representation for Computing Weak Structural Balance in Large-Scale Signed Networks. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds) Web Information Systems and Applications. WISA 2020. Lecture Notes in Computer Science(), vol 12432. Springer, Cham. https://doi.org/10.1007/978-3-030-60029-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60029-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60028-0

  • Online ISBN: 978-3-030-60029-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics