Skip to main content

An Experimental Study of Time Series Based Patient Similarity with Graphs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12432))

Abstract

Finding similarities between patients has been used to effectively and reliably predict diagnoses and guide treatments. However, Electronic Health Records (EHRs) contain characteristics that make analysis and application difficult. Firstly, it is difficult to compare two patients’ time series. Also, EHRs contain a vast amount of data, which proves to be a significant barrier to developing efficient systems for the widespread use of patient similarity. In this paper, we introduce a novel graph representation of time series EHRs. Our method compresses a patient’s time series medical records to reduce the storage required by more than 50%. Our paper also presents similarity metrics that can be applied to vector and graph representations of patient’s time series medical records and assesses the general performance for suggested metrics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ansong, S., Eteffa, K.F., Li, C., Sheng, M., Zhang, Y., Xing, C.: How to empower disease diagnosis in a medical education system using knowledge graph. WISA 2019, 518–523 (2019). https://doi.org/10.1007/978-3-030-30952-7_52

    Article  Google Scholar 

  2. Ao, X., Shi, H., Wang, J., Zuo, L., Li, H., He, Q.: Large-scale frequent episode mining from complex event sequences with hierarchies. ACM TIST 10(4), 36:1–36:26 (2019). https://doi.org/10.1145/3326163

  3. Bai, Y., Ding, H., Bian, S., Chen, T., Sun, Y., Wang, W.: Simgnn: a neural network approach to fast graph similarity computation. In: WSDM, pp. 384–392 (2019). https://doi.org/10.1145/3289600.3290967

  4. Barkhordari, M., Niamanesh, M.: Scadipasi: an effective scalable and distributable mapreduce-based method to find patient similarity on huge healthcare networks. Big Data Res. 2(1), 19–27 (2015). https://doi.org/10.1016/j.bdr.2015.02.004

    Article  Google Scholar 

  5. Das, A., Wang, J., Gandhi, S.M., Lee, J., Wang, W., Zaniolo, C.: Learn smart with less: Building better online decision trees with fewer training examples. In: IJCAI, pp. 2209–2215 (2019). https://doi.org/10.24963/ijcai.2019/306

  6. Eteffa, K.F., Ansong, S., Li, C., Sheng, M., Zhang, Y., Xing, C.: Application of patient similarity in smart health: a case study in medical education. WISA 2019, 714–719 (2019). https://doi.org/10.1007/978-3-030-30952-7_72

    Article  Google Scholar 

  7. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  8. Lin, C., Boursier, E., Papakonstantinou, Y.: Approximate analytics system over compressed time series with tight deterministic error guarantees. PVLDB 13(7), 1105–1118 (2020)

    Google Scholar 

  9. Liu, C., Wang, F., Hu, J., Xiong, H.: Temporal phenotyping from longitudinal electronic health records: a graph based framework. In: SIGKDD, pp. 705–714 (2015). https://doi.org/10.1145/2783258.2783352

  10. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. CoRR abs/1707.05005 (2017). http://arxiv.org/abs/1707.05005

  11. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.org/10.1016/j.imavis.2008.04.004

    Article  Google Scholar 

  12. Salvador, S., Chan, P.: Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11(5), 561–580 (2007)

    Article  Google Scholar 

  13. Sheng, M., et al.: Clmed: a cross-lingual knowledge graph framework for cardiovascular diseases. WISA 2019, 512–517 (2019). https://doi.org/10.1007/978-3-030-30952-7_51

    Article  Google Scholar 

  14. Tian, B., Zhang, Y., Wang, J., Xing, C.: Hierarchical inter-attention network for document classification with multi-task learning. In: IJCAI, pp. 3569–3575 (2019). https://doi.org/10.24963/ijcai.2019/495

  15. Wang, J., Lin, C., Li, M., Zaniolo, C.: Boosting approximate dictionary-based entity extraction with synonyms. Inf. Sci. 530, 1–21 (2020). https://doi.org/10.1016/j.ins.2020.04.025

    Article  Google Scholar 

  16. Wang, J., Lin, C., Zaniolo, C.: Mf-join: Efficient fuzzy string similarity join with multi-level filtering. In: ICDE, pp. 386–397 (2019). https://doi.org/10.1109/ICDE.2019.00042

  17. Wang, Y., Chen, W., Li, B., Boots, R.: Learning fine-grained patient similarity with dynamic bayesian network embedded RNNS. In: DASFAA, pp. 587–603 (2019). https://doi.org/10.1007/978-3-030-18576-3_35

  18. Wu, J., Zhang, Y., Wang, J., Lin, C., Fu, Y., Xing, C.: Scalable metric similarity join using mapreduce. In: ICDE, pp. 1662–1665 (2019). https://doi.org/10.1109/ICDE.2019.00167

  19. Yang, J., Zhang, Y., Zhou, X., Wang, J., Hu, H., Xing, C.: A hierarchical framework for top-k location-aware error-tolerant keyword search. In: ICDE, pp. 986–997 (2019). https://doi.org/10.1109/ICDE.2019.00092

  20. Zhao, K., Zhang, Y., Wang, Z., Yin, H., Zhou, X., Wang, J., Xing, C.: Modeling patient visit using electronic medical records for cost profile estimation. In: DASFAA, pp. 20–36 (2018). https://doi.org/10.1007/978-3-319-91458-9_2

  21. Zhao, K., et al.: Discovering subsequence patterns for next POI recommendation. In: IJCAI, pp. 3216–3222 (2020). https://doi.org/10.24963/ijcai.2020/445

  22. Zhu, Z., Yin, C., Qian, B., Cheng, Y., Wei, J., Wang, F.: Measuring patient similarities via a deep architecture with medical concept embedding. In: ICDM, pp. 749–758 (2016). https://doi.org/10.1109/ICDM.2016.0086

Download references

Acknowledgments

This work was supported by National Key R&D Program of China (2018YFB1404401, 2018YFB1402701), NSFC (91646202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eteffa, K.F., Ansong, S., Li, C., Sheng, M., Zhang, Y., Xing, C. (2020). An Experimental Study of Time Series Based Patient Similarity with Graphs. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds) Web Information Systems and Applications. WISA 2020. Lecture Notes in Computer Science(), vol 12432. Springer, Cham. https://doi.org/10.1007/978-3-030-60029-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60029-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60028-0

  • Online ISBN: 978-3-030-60029-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics