Skip to main content

Knowledge Graphs: Research Directions

  • Chapter
  • First Online:
Reasoning Web. Declarative Artificial Intelligence (Reasoning Web 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12258))

Included in the following conference series:

Abstract

In these lecture notes, we provide an overview of some of the high-level research directions and open questions relating to knowledge graphs. We discuss six high-level concepts relating to knowledge graphs: data models, queries, ontologies, rules, embeddings and graph neural networks. While traditionally these concepts have been explored by different communities in the context of graphs, more recent works have begun to look at how they relate to one another, and how they can be unified. In fact, at a more foundational level, we can find some surprising relations between the different concepts. The research questions we explore mostly involve combinations of these concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We intend to refer to the data model known as graph databases [9], not graph database systems [2].

  2. 2.

    An abridged version of [35] is currently under review for ACM CSUR.

  3. 3.

    We implicitly refer to two-way regular path queries as inverse expressions are quite widely used in practice [15].

  4. 4.

    Cyclical graph patterns that entail concept assertions can be captured, in a slightly roundabout way, in DLs with Self Restrictions and Complex Role Inclusions.

  5. 5.

    In practice, knowledge graph embeddings can take complex-valued vectors, or real-valued matrices, or have entity and relation embeddings of different dimensions [67], and so forth, but such details are not exigent for our purposes.

  6. 6.

    We can still define a to be the largest dimension needed, padding other vectors.

References

  1. Aberger, C.R., Lamb, A., Tu, S., Nötzli, A., Olukotun, K., Ré, C.: Emptyheaded: a relational engine for graph processing. ACM Trans. Database Syst. (TODS) 42(4), 20 (2017)

    Article  MathSciNet  Google Scholar 

  2. Angles, R.: The property graph database model. In: Olteanu, D., Poblete, B. (eds.) Proceedings of the 12th Alberto Mendelzon International Workshop on Foundations of Data Management, Cali, Colombia, 21–25 May 2018, CEUR Workshop Proceedings, vol. 2100. Sun SITE Central Europe (CEUR) (2018), http://ceur-ws.org/Vol-2100/paper26.pdf

  3. Angles, R., et al.: G-CORE: a core for future graph query languages. In: [19], pp. 1421–1432

    Google Scholar 

  4. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)

    Article  Google Scholar 

  5. Arenas, M., Conca, S., Pérez, J.: Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. In: Mille, A., Gandon, F.L., Misselis, J., Rabinovich, M., Staab, S. (eds.) Proceedings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, 16–20 April 2012, pp. 629–638. ACM Press, April 2012

    Google Scholar 

  6. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins. SIAM J. Comput. 42(4), 1737–1767 (2013). https://doi.org/10.1137/110859440

    Article  MathSciNet  MATH  Google Scholar 

  8. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  9. Barceló, P.: Querying graph databases. In: Hull, R., Fan, W. (eds.) Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA, 22–27 June 2013, pp. 175–188. ACM Press, June 2013. https://doi.org/10.1145/2463664.2465216

  10. Barceló, P., Kostylev, E.V., Monet, M., Peréz, J., Reutter, J., Silva, J.P.: The Logical Expressiveness of Graph Neural Networks. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net, April 2020. https://openreview.net/forum?id=r1lZ7AEKvB

  11. Bellomarini, L., Sallinger, E., Gottlob, G.: The vadalog system: datalog-based reasoning for knowledge graphs. Proc. VLDB Endowment 11(9), 975–987 (2018)

    Article  Google Scholar 

  12. Bienvenu, M., Ortiz, M., Simkus, M.: Regular path queries in lightweight description logics: complexity and algorithms. J. Artif. Intell. Res. 53, 315–374 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-agnostic query rewriting in SPARQL 1.1. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 584–600. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_37

    Chapter  Google Scholar 

  14. Bollacker, K., Tufts, P., Pierce, T., Cook, R.: A platform for scalable, collaborative, structured information integration. In: Nambiar, U., Nie, Z. (eds.) International Workshop on Information Integration on the Web (IIWeb 2007) (2007)

    Google Scholar 

  15. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query logs. Proc. VLDB Endowment 11(2), 149–161 (2017)

    Article  Google Scholar 

  16. Capadisli, S., Auer, S., Ngomo, A.N.: Linked SDMX data: path to high fidelity statistical linked data. Semantic Web 6(2), 105–112 (2015)

    Article  Google Scholar 

  17. Carral, D., Dragoste, I., González, L., Jacobs, C.J.H., Krötzsch, M., Urbani, J.: VLog: a rule engine for knowledge graphs. In: [25], pp. 19–35

    Google Scholar 

  18. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax, W3C Recommendation 25 February 2014. W3c recommendation, World Wide Web Consortium, 25 February 2014. https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

  19. Das, G., Jermaine, C.M., Bernstein, P.A. (eds.): Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, 10–15 June 2018. ACM Press, June 2018

    Google Scholar 

  20. Demeester, T., Rocktäschel, T., Riedel, S.: Lifted rule injection for relation embeddings. In: [65], pp. 1389–1399

    Google Scholar 

  21. Dimartino, M.M., Calì, A., Poulovassilis, A., Wood, P.T.: Efficient ontological query answering by rewriting into graph queries. In: Cuzzocrea, A., Greco, S., Larsen, H.L., Saccà, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2019. LNCS (LNAI), vol. 11529, pp. 75–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27629-4_10

    Chapter  Google Scholar 

  22. Feier, C., Kuusisto, A., Lutz, C.: Rewritability in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics. Log. Methods Comput. Sci. 15(2), 15:1–15:46 (2019)

    Google Scholar 

  23. Francis, N., et al.: Cypher: an evolving query language for property graphs. In: [19], pp. 1433–1445

    Google Scholar 

  24. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. Very Large Data Base J. 24(6), 707–730 (2015). https://doi.org/10.1007/s00778-015-0394-1

    Article  Google Scholar 

  25. Ghidini, C., et al. (eds.): ISWC 2019. LNCS, vol. 11779. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7

    Book  Google Scholar 

  26. Gottlob, G., Orsi, G., Pieris, A., Šimkus, M.: Datalog and its extensions for semantic web databases. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 54–77. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33158-9_2

    Chapter  MATH  Google Scholar 

  27. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings beyond horn ontologies. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013, pp. 832–838. IJCAI/AAAI, August 2013

    Google Scholar 

  28. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: [65], pp. 192–202

    Google Scholar 

  29. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013. W3C recommendation, World Wide Web Consortium, 21 March 2013. https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

  30. Hartig, O.: Foundations of RDF* and SPARQL* - an alternative approach to statement-level metadata in RDF. In: Reutter, J.L., Srivastava, D. (eds.) Proceedings of the 11th Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, Montevideo, Uruguay, 7–9 June 2017. CEUR Workshop Proceedings, vol. 1912. Sun SITE Central Europe (CEUR) (2017). http://ceur-ws.org/Vol-1912/paper12.pdf

  31. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer (Second edn), W3C Recommendation 11 December 2012. W3C recommendation, World Wide Web Consortium, 11 December 2012. https://www.w3.org/TR/2012/REC-owl2-primer-20121211/

  32. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  33. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo, G., Weikum, G.: YAGO2: exploring and querying world knowledge in time, space, context, and many languages. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, 28 March – 1 April 2011 (Companion Volume), pp. 229–232. ACM Press, March 2011

    Google Scholar 

  34. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to know about blank nodes. J. Web Semantics 27–28, 42–69 (2014)

    Article  Google Scholar 

  35. Hogan, A., et al.: Knowledge graphs. CoRR abs/2003.02320 (2020). https://arxiv.org/abs/2003.02320

  36. Hogan, A., Riveros, C., Rojas, C., Soto, A.: A worst-case optimal join algorithm for SPARQL. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 258–275. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_15

    Chapter  Google Scholar 

  37. Homola, M., Serafini, L.: Contextualized knowledge repositories for the semantic web. J. Web Semantics 12, 64–87 (2012)

    Google Scholar 

  38. Kalinsky, O., Etsion, Y., Kimelfeld, B.: Flexible caching in Trie joins. In: International Conference on Extending Database Technology (EDBT), pp. 282–293. OpenProceedings.org (2017)

    Google Scholar 

  39. Krötzsch, M., Marx, M., Ozaki, A., Thost, V.: Attributed description logics: reasoning on knowledge graphs. In: IJCAI, pp. 5309–5313 (2018). https://doi.org/10.24963/ijcai.2018/743

  40. Krötzsch, M., Rudolph, S., Schmitt, P.H.: A closer look at the semantic relationship between datalog and description logics. Semantic Web 6(1), 63–79 (2015)

    Article  Google Scholar 

  41. Krötzsch, M., Simancik, F., Horrocks, I.: Description logics. IEEE Intell. Syst. 29(1), 12–19 (2014)

    Article  MATH  Google Scholar 

  42. LaPaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and digraphs. Networks 14(4), 507–513 (1984). https://doi.org/10.1002/net.3230140403

    Article  MathSciNet  MATH  Google Scholar 

  43. Lefrançois, M., Zimmermann, A.: The unified code for units of measure in RDF: cdt:ucum and other UCUM datatypes. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 196–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_37

    Chapter  Google Scholar 

  44. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web J. 6(2), 167–195 (2015)

    Article  Google Scholar 

  45. Libkin, L.: Locality of queries and transformations. Electron. Notes Theor. Comput. Sci. 143, 115–127 (2006). https://doi.org/10.1016/j.entcs.2005.04.041

    Article  MathSciNet  Google Scholar 

  46. Meroño-Peñuela, A., Daga, E.: List.MID: a MIDI-based benchmark for evaluating RDF lists. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 246–260. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_16

    Chapter  Google Scholar 

  47. Mika, P., et al. (eds.): ISWC 2014. LNCS, vol. 8797. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1

    Book  Google Scholar 

  48. Miller, J.J.: Graph Database Applications and Concepts with Neo4j. In: Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, 23rd-24th March 2013, pp. 141–147. AIS eLibrary (2013). https://aisel.aisnet.org/sais2013/24

  49. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J. ACM 65(3), 16:1–16:40 (2018). https://doi.org/10.1145/3180143

    Article  MathSciNet  MATH  Google Scholar 

  51. Nguyen, D., et al.: Join processing for graph patterns: an old dog with new tricks. In: GRADES, p. 2. ACM (2015)

    Google Scholar 

  52. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: Making statements about statements using singleton property. In: Chung, C.W., Broder, A.Z., Shim, K., Suel, T. (eds.) 23rd International World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, pp. 759–770. ACM Press, April 2014

    Google Scholar 

  53. Noy, N.F., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. ACM Queue 17(2), 20 (2019)

    Article  Google Scholar 

  54. Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the horn fragments of the description logics SHOIQ and SROIQ. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011, pp. 1039–1044. IJCAI/AAAI, August 2011

    Google Scholar 

  55. Reutter, J.L., Soto, A., Vrgoč, D.: Recursion in SPARQL. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 19–35. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_2

    Chapter  Google Scholar 

  56. Rodriguez, M.A.: The Gremlin graph traversal machine and language. In: Cheney, J., Neumann, T. (eds.) Proceedings of the 15th Symposium on Database Programming Languages, Pittsburgh, PA, USA, 25–30 October 2015, pp. 1–10. ACM Press, October 2015

    Google Scholar 

  57. Rudolph, S.: Foundations of description logics. In: Polleres, A., et al. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 76–136. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23032-5_2

    Chapter  Google Scholar 

  58. Rudolph, S., Krötzsch, M., Hitzler, P.: Description logic reasoning with decision diagrams. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 435–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_28

    Chapter  Google Scholar 

  59. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  60. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  61. Schuetz, C., Bozzato, L., Neumayr, B., Schrefl, M., Serafini, L.: Knowledge graph OLAP: a multidimensional model and query operations for contextualized knowledge graphs. Semantic Web J. (2020). (Under open review)

    Google Scholar 

  62. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materialization? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_34

    Chapter  Google Scholar 

  63. Singhal, A.: Introducing the Knowledge Graph: things, not strings. Google Blog, May 2012. https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

  64. Stefanoni, G., Motik, B., Krötzsch, M., Rudolph, S.: The complexity of answering conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif. Intell. Res. 51, 645–705 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Su, J., Carreras, X., Duh, K. (eds.): Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, 1–4 November 2016. The Association for Computational Linguistics, November 2016

    Google Scholar 

  66. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  67. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowledge Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  68. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1859–1866. IJCAI/AAAI, July 2015

    Google Scholar 

  69. Wang, S., Schlobach, S., Klein, M.C.A.: Concept drift and how to identify it. J. Web Semantics 9(3), 247–265 (2011)

    Article  Google Scholar 

  70. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. CoRR abs/1901.00596 (2019). http://arxiv.org/abs/1901.00596

  71. Xiao, G., et al.: Ontology-based data access: a survey. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, pp. 5511–5519. IJCAI/AAAI, July 2018

    Google Scholar 

  72. Xiao, G., Rezk, M., Rodríguez-Muro, M., Calvanese, D.: Rules and ontology based data access. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 157–172. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11113-1_11

    Chapter  Google Scholar 

  73. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net, May 2019. https://openreview.net/forum?id=ryGs6iA5Km

  74. Zablith, F., et al.: Ontology evolution: a process-centric survey. Knowledge Eng. Rev. 30(1), 45–75 (2015)

    Article  Google Scholar 

  75. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for representing, reasoning and querying with annotated semantic web data. J. Web Semantics 12, 72–95 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt Grant No. 1181896 and by the Millennium Institute for Foundational Research on Data (IMFD). I would like to thank my co-authors on the extended tutorial for the various discussions and contributions that helped to inform these lecture notes. I also wish to thank the anonymous reviewers’ for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Hogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hogan, A. (2020). Knowledge Graphs: Research Directions. In: Manna, M., Pieris, A. (eds) Reasoning Web. Declarative Artificial Intelligence. Reasoning Web 2020. Lecture Notes in Computer Science(), vol 12258. Springer, Cham. https://doi.org/10.1007/978-3-030-60067-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60067-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60066-2

  • Online ISBN: 978-3-030-60067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics