Skip to main content

HpQC: A New Efficient Quantum Computing Simulator

  • Conference paper
  • First Online:
Book cover Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Abstract

With the continuous popularization of quantum computing, high-efficiency quantum computing simulators have attracted researchers’ attention because the running time and memory overhead of quantum computing is increased exponentially, which means that it is challenging to be simulated on a traditional computer. The current mainstream work solves this problem by using multi-node clusters, and we find that its single-node performance has not been effectively exerted. This paper proposes HpQC (High-performance Quantum Computing), a simulator that can efficiently parallel quantum computing on a single-node multi-core processor. First, HpQC used AVX2 and FMA instruction sets to maximize the advantages of SIMD (Single Instruction Multiple Data) vectorizations; second, it reduced the CPU calculation cycle by using faster and more efficient bit operations; and finally, we designed innovation data structure to utilize spatial locality of cache effectively. Besides, this article selects the state-of-the-art quantum computing simulator, QuEST (the Quantum exact simulation toolkit), as the benchmark for performance evaluation. For the quantum fourier transform, experimental results show that HpQC can achieve an average acceleration of 2.20x (GNU compiler) and 1.91x (Intel compiler), respectively, compared to QuEST. As for the random quantum circuit program, HpQC can achieve an average speedup of 1.74x (GNU compiler) and 1.51x (Intel compiler), respectively, compared to QuEST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  Google Scholar 

  2. Douglas, B.L., Wang, J.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 79(5), 052335 (2009)

    Google Scholar 

  3. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. In: Foundations of Computer Science (2000)

    Google Scholar 

  4. Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I., Cammarota, R.: Post-quantum lattice-based cryptography implementations: a survey. ACM Comput. Surv. 51(6), 1–41 (2019)

    Google Scholar 

  5. Bruss, D., Erdelyi, G., Meyer, T., Riege, T., Rothe, J.: Quantum cryptography: a survey. ACM Comput. Surv. 39(2), 6-es (2007)

    Google Scholar 

  6. Elliott, C., Pearson, D., Troxel, G.D.: Quantum cryptography in practice. In: ACM Special Interest Group on Data Communication (2003)

    Google Scholar 

  7. Pudenz, K., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12(5), 2027–2070 (2013)

    Article  MathSciNet  Google Scholar 

  8. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  Google Scholar 

  9. Ying, M.: Quantum computation, quantum theory and AI. Artif. Intell. 174(2), 162–176 (2010)

    Article  MathSciNet  Google Scholar 

  10. Ash-Saki, A., Alam, M., Ghosh, S.: QURE: Qubit re-allocation in noisy intermediate-scale quantum computers. In: Proceedings of the 56th Annual Design Automation Conference 2019 (DAC 2019). Association for Computing Machinery, New York, NY, USA, Article 141, pp. 1–6 (2019)

    Google Scholar 

  11. Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., Alderete, C.H.: Full-stack, real-system quantum computer studies: architectural comparisons and design insights. In: Proceedings of the 46th International Symposium on Computer Architecture (ISCA 2019). Association for Computing Machinery, New York, NY, USA, pp. 527–540 (2019)

    Google Scholar 

  12. Liu, J., Byrd, G.T., Zhou, H.: Quantum circuits for dynamic runtime assertions in quantum computation. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2020). Association for Computing Machinery, New York, NY, USA, pp. 1017–1030 (2020)

    Google Scholar 

  13. Das, P., Tannu, S.S., Nair, P.J., Qureshi, M.: A case for multi-programming quantum computers. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 52). Association for Computing Machinery, New York, NY, USA, pp. 291–303 (2019)

    Google Scholar 

  14. Li, R., Wu, B., Ying, M., Sun, X., Yang, G.: Quantum supremacy circuit simulation on sunway taihulight. IEEE Trans. Parallel Distrib. Syst. 31(4), 805–816 (2020)

    Article  Google Scholar 

  15. Gutierrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer simulation using the CUDA programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)

    Article  MathSciNet  Google Scholar 

  16. Aminian, M., Saeedi, M., Zamani, M.S., Sedighi, M.: FPGA-based circuit model emulation of quantum algorithms. In: Proceedings of the 2008 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2008). IEEE Computer Society, USA, pp. 399–404 (2008)

    Google Scholar 

  17. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 133–153 (1999)

    MathSciNet  Google Scholar 

  18. Häner, T., Steiger, D.S., Smelyanskiy, M., Troyer, M.: High performance emulation of quantum circuits. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2016). IEEE Press, Article 74, pp. 1–9 (2016)

    Google Scholar 

  19. Wu, X.-C., et al.: Full-state quantum circuit simulation by using data compression. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2019). Association for Computing Machinery, New York, NY, USA, Article 80, pp. 1–24 (2019)

    Google Scholar 

  20. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018). Crossref. Web

    Google Scholar 

  21. Smelyanskiy, M., Sawaya, N.P., Aspuruguzik, A.: qHiPSTER: the quantum high performance software testing environment. arXiv: Quantum Physics (2016)

  22. Häner, T., Steiger, D.S.: 0.5 petabyte simulation of a 45-qubit quantum circuit. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2017). Association for Computing Machinery, New York, NY, USA, Article 33, pp. 1–10 (2016)

    Google Scholar 

  23. Jones, T., Brown, A., Bush, I., Benjamin, S.C.: QuEST and high performance simulation of quantum computers. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

  24. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier Transform. Phys. Rev. Lett. 86(9), 1889–1891 (2001)

    Article  Google Scholar 

  25. Guo, C., et al.: General-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontier. Phys. Rev. Lett. 123(19), 190501 (2019)

    Google Scholar 

Download references

Acknowledgment

This paper is partially supported by the National Natural Science Foundation of China (No.61762074, No.61962051), National Natural Science Foundation of Qinghai Province (No. 2019-ZJ-7034). “Qinghai Province High-end Innovative Thousand Talents Program - Leading Talents” Project Support. The Open Project of State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University (2020-ZZ-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, H., Huang, J., Dong, R., Guo, Y., Wang, X. (2020). HpQC: A New Efficient Quantum Computing Simulator. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12453. Springer, Cham. https://doi.org/10.1007/978-3-030-60239-0_8

Download citation

Publish with us

Policies and ethics