Skip to main content

PRIAG: Proximal Reweighted Incremental Aggregated Gradient Algorithm for Distributed Optimizations

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12452))

  • 1499 Accesses

Abstract

Large-scale machine learning problems are nowadays tackled by distributed optimization algorithms, i.e., algorithms that leverage multiple workers for training. However, collecting the information from all workers in every iteration is sometimes expensive or even prohibitive. In this paper, we propose an iterative algorithm called proximal reweighted incremental aggregated gradient (PRIAG) for solving a class of nonconvex and nonsmooth problems, which are ubiquitous in machine learning tasks and distributed optimization problems. In each iteration, this algorithm just needs the information from one worker due to the incremental aggregated method. Combined with the reweighted technique, we only require an easy-to-calculate proximal operator to deal with the nonconvex and nonsmooth properties. Using the Lyapunov function analysis method, we prove that the PRIAG algorithm is convergent under some mild assumptions. We apply this approach to nonconvex nonsmooth problems and distributed optimization tasks. Numerical experiments on both synthetic and real data sets show that our algorithm can achieve comparative learning performance, but more efficiently, compared with previous nonconvex solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: a survey. Optim. Mach. Learn. 2010(1–38), 3 (2011)

    Google Scholar 

  4. Blatt, D., Hero, A.O., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)

    Google Scholar 

  6. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Ng, M.K., Zhang, C.: Non-lipschitz \(\ell _ p\)-regularization and box constrained model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

    Article  MathSciNet  Google Scholar 

  8. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  9. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In: Glowinski, R., Osher, S.J., Yin, W. (eds.) Splitting Methods in Communication, Imaging, Science, and Engineering. SC, pp. 115–163. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41589-5_4

    Chapter  Google Scholar 

  10. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems, pp. 1646–1654 (2014)

    Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. Duchi, J.C., Agarwal, A., Wainwright, M.J.: Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. control 57(3), 592–606 (2011)

    Article  MathSciNet  Google Scholar 

  13. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  14. Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with a certain family of nonconvex penalties and DC programming. IEEE Trans. Signal Process. 57(12), 4686–4698 (2009)

    Article  MathSciNet  Google Scholar 

  15. Giannakis, G.B., Kekatos, V., Gatsis, N., Kim, S.J., Zhu, H., Wollenberg, B.F.: Monitoring and optimization for power grids: a signal processing perspective. IEEE Signal Process. Mag. 30(5), 107–128 (2013)

    Article  Google Scholar 

  16. Gong, P., Ye, J., Zhang, C.: Robust multi-task feature learning. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 895–903 (2012)

    Google Scholar 

  17. Guo, F., Wen, C., Mao, J., Song, Y.D.: Distributed economic dispatch for smart grids with random wind power. IEEE Trans. Smart Grid 7(3), 1572–1583 (2015)

    Article  Google Scholar 

  18. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 433–440 (2009)

    Google Scholar 

  19. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for unconstrained smoothed \(\ell _q\) minimization. SIAM J. Numeric. Anal. 51(2), 927–957 (2013)

    Article  Google Scholar 

  20. Lu, C., Wei, Y., Lin, Z., Yan, S.: Proximal iteratively reweighted algorithm with multiple splitting for nonconvex sparsity optimization. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  21. Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  22. Lu, Z., Zhang, Y.: Schatten-p quasi-norm regularized matrix optimization via iterative reweighted singular value minimization. arXiv preprint arXiv:1401.0869 (2015)

  23. Mateos, G., Bazerque, J.A., Giannakis, G.B.: Distributed sparse linear regression. IEEE Trans. Signal Process. 58(10), 5262–5276 (2010)

    Article  MathSciNet  Google Scholar 

  24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Heidelberg (2006)

    Book  Google Scholar 

  25. Padakandla, A., Sundaresan, R.: Separable convex optimization problems with linear ascending constraints. SIAM J. Optim. 20(3), 1185–1204 (2010)

    Article  MathSciNet  Google Scholar 

  26. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends® Optim. 1(3), 127–239 (2014)

    Google Scholar 

  27. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pp. 20–27 (2004)

    Google Scholar 

  28. Rabbat, M.G., Nowak, R.D.: Decentralized source localization and tracking [wireless sensor networks]. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 3, pp. iii–921. IEEE (2004)

    Google Scholar 

  29. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 693–701 (2011)

    Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  31. Shi, W., Ling, Q., Wu, G., Yin, W.: A proximal gradient algorithm for decentralized composite optimization. IEEE Trans. Signal Process. 63(22), 6013–6023 (2015)

    Article  MathSciNet  Google Scholar 

  32. Sun, T., Jiang, H., Cheng, L.: Convergence of proximal iteratively reweighted nuclear norm algorithm for image processing. IEEE Trans. Image Process. 26(12), 5632–5644 (2017)

    Article  MathSciNet  Google Scholar 

  33. Sun, T., Jiang, H., Cheng, L.: Global convergence of proximal iteratively reweighted algorithm. J. Global Optim. 68(4), 815–826 (2017). https://doi.org/10.1007/s10898-017-0507-z

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, T., Jiang, H., Cheng, L., Zhu, W.: Iteratively linearized reweighted alternating direction method of multipliers for a class of nonconvex problems. IEEE Trans. Signal Process. 66(20), 5380–5391 (2018)

    Article  MathSciNet  Google Scholar 

  35. Sun, T., Li, D., Jiang, H., Quan, Z.: Iteratively reweighted penalty alternating minimization methods with continuation for image deblurring. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3757–3761. IEEE (2019)

    Google Scholar 

  36. Sun, T., Sun, Y., Li, D., Liao, Q.: General proximal incremental aggregated gradient algorithms: Better and novel results under general scheme. In: Advances in Neural Information Processing Systems, pp. 994–1004 (2019)

    Google Scholar 

  37. Vanli, N.D., Gurbuzbalaban, M., Ozdaglar, A.: Global convergence rate of proximal incremental aggregated gradient methods. SIAM J. Optim. 28(2), 1282–1300 (2018)

    Article  MathSciNet  Google Scholar 

  38. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3(Mar), 1439–1461 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded in part by the Core Electronic Devices, High-end Generic Chips, and Basic Software Major Special Projects (No. 2018ZX01028101), and in part by the National Natural Science Foundation of China (No. 61907034, No. 61932001, and No. 61906200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Editor information

Editors and Affiliations

Appendices

Appendix

Proof of Lemma 1

Note that \(x^{k+1}\) is obtained by (7), combining with the Definition 1 and 2 we have

$$\begin{aligned} \frac{x^{k}-x^{k+1}}{\gamma }-v^{k} \in \partial w^k \cdot \tilde{g} \left( x^{k+1}\right) . \end{aligned}$$
(26)

With the convexity of g, we have

$$\begin{aligned} w^k \cdot (\tilde{g} \left( x^{k+1}\right) -\tilde{g} \left( x^{k}\right) )\le \left\langle \frac{x^{k}-x^{k+1}}{\gamma }-v^{k}, x^{k+1}-x^k \right\rangle . \end{aligned}$$
(27)

The assumption (b) implies that the sum function F is differentiable with L-continues gradient, i.e.,

$$\begin{aligned} \Vert \nabla F(w)-\nabla F(\overline{w})\Vert _{2} \le L \Vert w-\overline{w}\Vert _{2}, \end{aligned}$$
(28)

where \(L=\sum _{i=1}^{m}L_i\). We can further get

$$\begin{aligned} F \left( x^{k+1}\right) -F \left( x^{k}\right) \le \left\langle \nabla F \left( x^{k}\right) , x^{k+1}-x^k \right\rangle + \frac{L}{2} \left\| x^{k+1}-x^k\right\| _{2}^{2}. \end{aligned}$$
(29)

Then we have

$$\begin{aligned} \begin{aligned}&\varPhi (x^{k+1})-\varPhi (x^{k})=F \left( x^{k+1}\right) -F \left( x^{k}\right) +\sum _{j=1}^{n} h \left( g\left( x_{j}^{k+1}\right) \right) -h \left( g\left( x_{j}^{k}\right) \right) \\&\le \left\langle \nabla F\left( x^{k}\right) , x^{k+1}-x^k \right\rangle +\frac{L}{2}\left\| x^{k+1}-x^k\right\| _{2}^{2}+\sum _{j=1}^{n} h \left( g\left( x_{j}^{k+1}\right) \right) -h\left( g\left( x_{j}^{k}\right) \right) \\&\le \left\langle \nabla F \left( x^{k}\right) , x^{k+1}-x^k \right\rangle +\frac{L}{2}\left\| x^{k+1}-x^k\right\| _{2}^{2}+\sum _{j=1}^{n} w_j^k \left( g\left( x_{j}^{k+1}\right) -g\left( x_{j}^{k} \right) \right) \\&= \left\langle \nabla F \left( x^{k}\right) , x^{k+1}-x^k \right\rangle +\frac{L}{2}\left\| x^{k+1}-x^k\right\| _{2}^{2}+w^k\cdot \left( \tilde{g} \left( x^{k+1}\right) -\tilde{g} \left( x^{k}\right) \right) \\&\le \left\langle \nabla F \left( x^{k}\right) , x^{k+1}-x^k \right\rangle + \frac{L}{2} \left\| x^{k+1}-x^k\right\| _{2}^{2}+\left\langle \frac{x^{k+1}-x^k}{\gamma }+v^{k},-x^{k+1}-x^k \right\rangle \\&=\underbrace{\left\langle \nabla F \left( x^{k}\right) -v^{k}, x^{k+1}-x^k \right\rangle }_{I} + \left( \frac{L}{2}-\frac{1}{\gamma } \right) \left\| x^{k+1}-x^k\right\| _{2}^{2}, \end{aligned} \end{aligned}$$
(30)

where \(w_j^k:=(h^{\prime }(g(x_j^k))\) and \(\tilde{g}=(g(x_1), g(x_2), \ldots , g(x_N))^{\top }\). The first inequality uses (29). The second inequality uses the concavity of h. The third inequality uses (27). In the following, we will give the bound of I. First, notice that \(\text {max}_{i,k}\{\tau _{i,k}\}\le \tau \), then

$$\begin{aligned} \left\| x^{k}-x^{k-\tau _{i, k}}\right\| _2 \le \sum _{d=k-\tau _{i, k}}^{k-1} \left\| x^{d+1}-x^d\right\| _2 \le \sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d\right\| _2. \end{aligned}$$
(31)

Combining with (7), we have

$$\begin{aligned} \begin{aligned} I&=\left\langle \nabla F \left( x^{k}\right) -v^{k}, x^{k+1}-x^k \right\rangle \\&=\left\langle \sum _{i=1}^{m}\left( \nabla f_i \left( x^{k} \right) -\nabla f_i \left( x^{k-\tau _{i,k}} \right) \right) , x^{k+1}-x^k \right\rangle \\&\le \sum _{i=1}^{m} L_{i} \left\| x^{k}-x^{k-\tau _{i, k}}\right\| _2 \cdot \left\| x^{k+1}-x^k\right\| _2\\&\le \sum _{i=1}^{m} L_{i} \left( \sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d \right\| _2 \right) \cdot \left\| x^{k+1}-x^k \right\| _2\\&= L \sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d \right\| _2 \cdot \left\| x^{k+1}-x^k \right\| _2. \end{aligned} \end{aligned}$$
(32)

The first inequality uses the Lipschitz continuity of \(\nabla f_{i}\). The second inequality uses (31). Meanwhile, for any \(\xi >0\), we have the following Cauchy’s inequality

$$\begin{aligned} \left\| x^{d+1}-x^d\right\| _2 \cdot \left\| x^{k+1}-x^k\right\| _2 \le \frac{1}{2 \xi } \left\| x^{d+1}-x^d\right\| _{2}^{2}+\frac{\xi }{2}\left\| x^{k+1}-x^k \right\| _{2}^{2}. \end{aligned}$$
(33)

Then we have

$$\begin{aligned} I \le \frac{L}{2 \xi } \sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d\right\| _{2}^{2}+\frac{\tau \xi L}{2} \left\| x^{k+1}-x^k\right\| _{2}^{2}. \end{aligned}$$
(34)

Combining (30), (34), we have

$$\begin{aligned} \varPhi (x^{k+1})-\varPhi (x^{k}) \le \frac{L}{2 \xi } \sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d\right\| _{2}^{2}+\left[ \frac{(\tau \xi +1)L}{2}-\frac{1}{\gamma }\right] \left\| x^{k+1}-x^k\right\| _{2}^{2}. \end{aligned}$$
(35)

If \(0<\gamma <\frac{2}{(2\tau +1)L}\), we can choose \(\xi >0\), such that

$$\begin{aligned} \xi +\frac{1}{\xi }=1+\frac{1}{\tau }\left( \frac{1}{\gamma L}-\frac{1}{2}\right) . \end{aligned}$$
(36)

Then, with direct calculations and substitutions, we have

$$\begin{aligned} \begin{aligned}&\varGamma _{k}(\xi )-\varGamma _{k+1}(\xi ) \\&=\varPhi \left( x^{k}\right) -\varPhi \left( x^{k+1}\right) +\frac{L}{2 \xi }\sum _{d=k-\tau }^{k-1}(d-(k-\tau )+1)\left\| x^{d+1}-x^d \right\| _{2}^{2}\\&\ \ \ -\frac{L}{2\xi }\sum _{d=k+1-\tau }^{k}(d-(k-\tau ))\left\| x^{d+1}-x^d\right\| _{2}^{2}\\&= \varPhi \left( x^{k}\right) -\varPhi \left( x^{k+1}\right) +\frac{L}{2 \xi }\sum _{d=k-\tau }^{k-1}(d-(k-\tau )+1)\left\| x^{d+1}-x^d\right\| _{2}^{2}\\&\ \ \ -\frac{L}{2 \xi }\sum _{d=k-\tau }^{k-1}(d-(k-\tau ))\left\| x^{d+1}-x^d\right\| _{2}^{2}-\frac{L}{2 \xi } \tau \left\| x^{k+1}-x^k \right\| _{2}^{2}\\&= \varPhi \left( x^{k}\right) -\varPhi \left( x^{k+1}\right) +\frac{L}{2 \xi }\sum _{d=k-\tau }^{k-1} \left\| x^{d+1}-x^d\right\| _{2}^{2}-\frac{L}{2\xi } \tau \left\| x^{k+1}-x^k \right\| _{2}^{2}\\&\ge (\frac{1}{\gamma }-\frac{(\tau \xi +1)L}{2}-\frac{L}{2\xi }\tau ) \left\| x^{k+1}-x^k\right\| _{2}^{2}\\&=\frac{1}{4} \left( \frac{1}{\gamma }-\frac{L}{2}-\tau L\right) \left\| x^{k+1}-x^k\right\| _{2}^{2}. \end{aligned} \end{aligned}$$
(37)

The first inequality uses (35). The last equation uses (36). We then prove the first result. By summing the inequality (37), we have:

$$\begin{aligned} \sum _{k=1}^{\infty }\left\| x^{k+1}-x^k \right\| _{2}^{ 2 }<\infty . \end{aligned}$$
(38)

The second then obviously holds. Using [Lemma 3, [9]], we are then led to

$$\begin{aligned} \min _{1\le i\le k}\left\| x^{i+1}-x^i \right\| _{2}^2 =o\left( \frac{1}{k}\right) , \end{aligned}$$
(39)

which directly derives the third one.

Proof of Theorem 1

By the definition of subdifferential, we have

$$\begin{aligned} \frac{x^{k}-x^{k+1}}{\gamma }-v^{k} \in \partial w^k \tilde{g} \left( x^{k+1} \right) . \end{aligned}$$
(40)

That means

$$\begin{aligned} \begin{aligned} \frac{x^{k}-x^{k+1}}{\gamma }+\nabla F \left( x^{k+1}\right) -v^{k} \in \nabla F \left( x^{k+1}\right) +\partial H \left( x^{k+1}\right) =\partial \varPhi \left( x^{k+1}\right) , \end{aligned} \end{aligned}$$
(41)

where \(H(x):=\sum _{j=1}^{n} h\left( g\left( x_{j}\right) \right) \). Thus we have

$$\begin{aligned} \begin{aligned} {\text {dist}}^2 \left( \mathbf {0}, \partial \varPhi \left( x^{k+1}\right) \right)&= \Vert \frac{x^{k}-x^{k+1}}{\gamma }+\nabla F \left( x^{k+1}\right) -v^k\Vert _2^2\\&\le \frac{2\left\| x^{k+1}-x^k \right\| _2^2}{\gamma ^2}+2L^2\tau \sum _{d=k-\tau }^{k} \left\| x^{d+1}-x^d\right\| _2^2. \end{aligned} \end{aligned}$$
(42)

Combining with Lemma 1,

$$\begin{aligned} \sum _{k}{\text {dist}}^2\left( \mathbf {0}, \partial \varPhi \left( x^{k+1}\right) \right) <+\infty . \end{aligned}$$
(43)

Still using [Lemma 3, [9]], the result can be proved.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, X., Sun, T., Liu, F., Huang, F. (2020). PRIAG: Proximal Reweighted Incremental Aggregated Gradient Algorithm for Distributed Optimizations. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12452. Springer, Cham. https://doi.org/10.1007/978-3-030-60245-1_34

Download citation

Publish with us

Policies and ethics