Skip to main content

A Multiplatform Parallel Approach for Lattice Sieving Algorithms

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Abstract

Lattice sieving is currently the leading class of algorithms for solving the shortest vector problem over lattices. The computational difficulty of this problem is the basis for constructing secure post-quantum public-key cryptosystems based on lattices. In this paper, we present a novel massively parallel approach for solving the shortest vector problem using lattice sieving and hardware acceleration. We combine previously reported algorithms with a proper caching strategy and develop hardware architecture. The main advantage of the proposed approach is eliminating the overhead of the data transfer between a CPU and a hardware accelerator. The authors believe that this is the first such architecture reported in the literature to date and predict to achieve up to 8 times higher throughput when compared to a multi-core high-performance CPU. Presented methods can be adapted for other sieving algorithms hard to implement in FPGAs due to the communication and memory bottleneck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. SVP Challenge. https://www.latticechallenge.org/svp-challenge/

  2. Ajtai, M., Kumar, R., Sivakumar, D.: An overview of the sieve algorithm for the shortest lattice vector problem. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 1–3. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_1

    Chapter  Google Scholar 

  3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 601–610. ACM Press (2001). https://doi.org/10.1145/380752.380857. http://portal.acm.org/citation.cfm?doid=380752.380857

  4. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens, M.: The general sieve kernel and new records in lattice reduction. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_25

    Chapter  MATH  Google Scholar 

  5. Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in ideal lattices: a practical perspective. Int. J. Appl. Cryptol. 3(4), 313–329 (2017). https://doi.org/10.1504/IJACT.2017.089353

    Article  MathSciNet  MATH  Google Scholar 

  6. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with FPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 124–143. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_8

    Chapter  Google Scholar 

  7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fourtieth Annual ACM Symposium on Theory of Computing, STOC 2008, p. 197. ACM Press (2008). https://doi.org/10.1145/1374376.1374407. http://dl.acm.org/citation.cfm?doid=1374376.1374407

  8. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel gauss sieve algorithm: solving the SVP challenge over a 128-dimensional ideal lattice. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_24

    Chapter  Google Scholar 

  9. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 937–941. Society for Industrial and Applied Mathematics, USA (2000)

    Google Scholar 

  10. Kuo, P.-C., et al.: Extreme enumeration on GPU and in clouds. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 176–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_12

    Chapter  Google Scholar 

  11. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1468–1480. Society for Industrial and Applied Mathematics. https://epubs.siam.org/doi/10.1137/1.9781611973075.119

  12. Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the shortest vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 452–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_40

    Chapter  MATH  Google Scholar 

  13. Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss Sieve algorithm on GPUs. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 39–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Andrzejczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrzejczak, M., Gaj, K. (2020). A Multiplatform Parallel Approach for Lattice Sieving Algorithms. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12452. Springer, Cham. https://doi.org/10.1007/978-3-030-60245-1_45

Download citation

Publish with us

Policies and ethics