Skip to main content

Temporal Knowledge Graph Incremental Construction Model for Recommendation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12317))

Abstract

Knowledge graph (KG) has been proven to be effective to improve the performance of recommendation because of exploiting structural and semantic paths information in a static knowledge base. However, the KG is an incremental construction process with interactions occurring in succession. Although some works have been proposed to explore the evolution of knowledge graph, which updates the entity representations by considering the previous interactions of related entities. However, we believe that the semantic path information between the involved entities and the occurring interaction itself also can refine their representations. To this end, we propose a temporal knowledge graph incremental construction model, which updates the entity representations by considering interaction itself and high-order semantic paths information. Specifically, different length semantic paths between user and item are automatically extracted when an interaction occurs. Then we respectively employ recurrent neural network and standard multi-layer perceptron (MLP) to capture different length path semantic information and interaction itself information for updating the entity representations. Finally, we use MLP to predict the probability that a user likes an item after seamlessly integrating these variations into a unified representation. We conduct experiments on real-world datasets to demonstrate the superiority of our proposed model over all state-of-the-art baselines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goyal, P., Kamra, N., He, X., Liu, Y.: DynGEM: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  2. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  3. Hu, B., Shi, C., Zhao, W.X., Yu, P.S.: Leveraging meta-path based context for top-N recommendation with a neural co-attention model. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1531–1540 (2018)

    Google Scholar 

  4. Luo, C., Pang, W., Wang, Z., Lin, C.: Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations. In: 2014 IEEE International Conference on Data Mining, pp. 917–922. IEEE (2014)

    Google Scholar 

  5. Shi, Y., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput. Surv. (CSUR) 47(1), 1–45 (2014)

    Article  Google Scholar 

  6. Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L.K., Xu, C.: Recurrent knowledge graph embedding for effective recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 297–305 (2018)

    Google Scholar 

  7. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs (2018)

    Google Scholar 

  8. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD International Conference on knowledge Discovery and Data Mining, pp. 1235–1244 (2015)

    Google Scholar 

  9. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention network for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 950–958 (2019)

    Google Scholar 

  10. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 165–174 (2019)

    Google Scholar 

  11. Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336 (2019)

    Google Scholar 

  12. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362 (2016)

    Google Scholar 

  13. Zhang, X., Chen, X., Yan, C., Wang, S., Li, Z., Xia, J.: Event detection and popularity prediction in microblogging. Neurocomputing 149(pt.c), 1469–1480 (2015)

    Article  Google Scholar 

  14. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by grants from the National Natural Science Foundation of China (No. U1933114), the Fundamental Research Funds for the Central Universities (No. ZXH2012P009) and Civil Aviation Science and Technology Project (No. MHRD20130220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjing Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, C., Sun, L., Ji, W. (2020). Temporal Knowledge Graph Incremental Construction Model for Recommendation. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12317. Springer, Cham. https://doi.org/10.1007/978-3-030-60259-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60259-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60258-1

  • Online ISBN: 978-3-030-60259-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics