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Abstract—State Machine Replication (SMR) is a fundamental
approach to designing service with fault tolerance. However, its
requirement for the deterministic execution of transactions often
results in single-threaded replicas, which cannot fully exploit the
multicore capabilities of today’s processors. Therefore, parallel
SMR has become a hot topic of recent research. The basic idea
behind it is that independent transactions can be executed in
parallel, while dependent transactions must be executed in their
relative order to ensure consistency among replicas. The depen-
dency detection of existing parallel SMR methods is mainly based
on pairwise transaction comparison or batch comparison. These
methods cannot simultaneously guarantee both effective detection
and concurrent execution. Moreover, the scheduling process
cannot execute concurrently, which introduces extra scheduling
overhead as well. In order to further reduce scheduling overhead
and ensure the parallel execution of transactions, we propose an
efficient scheduler based on a specific index structure. The index
is composed of a Bloom Filter and the associated transaction
queues, which provides an efficient dependency detection and
preserve necessary dependency information respectively. Based
on the index structure, we further devise an elaborated concur-
rent scheduling process. The experimental results show that the
proposed scheduler is more efficient, scalable and robust than
the comparison methods.

Index Terms—fault tolerance, state machine replication, high
performance, distributed systems

I. INTRODUCTION

Large-scale online service systems need to ensure high
availability and high efficiency of the services. State Ma-
chine Replication (SMR) [1], [2] based on various consensus
protocols, such as Paxos [3] and PBFT [4], is a common
approach to designing fault-tolerate services. According to
SMR model, even some of the replicas fail, the services will
be kept available with the consistent replicas. SMR achieves
strong consistency [5] by regulating every replica executing the
same transactions in the same order: (i) every available replica
receives all the same transactions eventually; (ii) all replicas
must agree on the same order of the transactions received; and
(iii) every replica starts from the same initial state and executes
the agreed transactions deterministically (ie., transaction must
guarantee ACID and the transaction’s changes to the state of
the records are a function of only the initial state of the records
and the transaction itself).

Gang Wu is supported by the NSFC (Grant No. 61872072) and the State
Key Laboratory of Computer Software New Technology Open Project Fund
(Grant No. KFKT2018B05).

As we know, SMR is mainly designed to improve the
system’s availability rather than its performance [6]–[10]. The
requirement of the sequential execution of the total order
(same order on all replicas) transactions makes it difficult
for SMR to take full advantage of multi-core servers. It
cannot directly execute transactions concurrently because the
uncertainty of thread scheduling and lock competition would
result in the undeterministic execution. However, the sequen-
tial execution is not a necessary requirement for consistency
[2]. In short, dependent transactions(access the same records)
must be handled in the same relative order on each replica
to keep consistency, while independent transactions(access
the different records) can be executed in parallel, which can
fully utilize the processor’s multi-core processing ability. Thus,
basing on transaction semantics, how to use the transaction
independence to improve the performance of SMR has become
a hot research direction [11]–[17].

For example, CBASE [11] is a classic parallel replication
framework proposed to enhance the performance of PBFT
algorithm. It sets up a scheduler for every replica which
constructs a dependency graph by finding the dependencies
pairwise among transactions in their total order. Based on
the dependency graph, the scheduler dispatches transactions
to idle threads in the thread pool for execution. Once a
transaction is executed by one thread, the scheduler removes
it from the graph and responds to clients. The scheduler
of CBASE maximizes concurrency among executions while
ensuring replica consistency.

However, recent research [15] has shown that, under the
conditions of high workload, due to the high overhead of
pairwise transaction comparisons, determining dependencies
among transactions that have not yet been executed is a per-
formance bottleneck. To overcome this problem, batchCBASE
[15] determine the dependencies by batch comparison rather
than a single transaction comparison once a time, which
greatly reduces the times of comparison dramatically. How-
ever, it increases the possibility of inter-batch dependencies,
and as transactions in each batch are executed sequentially, it
loses some of the parallelism for those transactions within a
batch. In this way, batchCBASE provides a possible trade-
off between the parallel execution and dependency detec-
tion. Moreover, in order to promise replica consistence and
operation safety, the scheduling process of CBASE and
batchCBASE are in single-threaded mode, which means the
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scheduler and worker threads cannot access the dependency
graph at the same time, it introduce more overhead to the
system.

In summary, parallel SMR schedulers now face four chal-
lenges: 1) faster detection of transaction dependencies; 2) not
sacrificing any parallelism of the execution; 3) concurrent
scheduling process; and 4) ensuring correctness. In this paper,
we propose an efficient scheduler based on a specific index
structure to address the above challenges. It consists of a
special Bloom filter and corresponding transaction queues for
each filter element, with the Bloom filter, the dependencies
among transactions can be detected within a constant time.
Transaction queues can maintain the total order relations
of the transactions and also simplify the representation of
the transaction dependency graph. Moreover, the proposed
scheduler supports record-granularity locks with the help of
the above mentioned index structure, thereby supporting the
concurrent scheduling process(specifically the insert, remove,
and get operations) of transactions. In summary, the proposed
method can efficiently solve the performance loss problem
caused by the heavy scheduling overhead from the dependency
graph based comparisons, and it can guarantee the execution
parallelism under various workloads with different dependency
rates. To show the proposed models advantages in throughput,
scalability and robustness in comparison with CBASE and
batchCBASE, experiments are conducted and analyzed on
a database prototype. Furthermore, the consistency among
replicas and other scheduling safety propositions are proved
formally.

The remainder of this paper is organized as follows. The
system model is described in section II. The parallel SMR
model of CBASE and batchCBASE are introduced in Sec-
tion III. In Section IV, the proposed index-based scheduling
approach is described in detail. The experimental results are
shown in Section V. Finally, we introduce some related work
in Section VI and conclude in Section VII.

II. SYSTEM MODEL

We assume a general distributed service system model,
which is composed of an unbounded client sets C =
{c1, c2, ...} and a bounded server set S = {s1, s2, ..., sn}.
All servers in S are replicas of each other and work together
to provide highly available services to the clients where the
Paxos protocol is used to ensure consistency. The message
transmission among distributed replicas is in asynchronous
mode, which allows arbitrary message loss and delay. We
assume that replicas follow the fail-stop model and never
encounter a Byzantine error, which means the state of each
replica is either correct or crash, and hence the system with
2f+1 replicas can tolerate f replicas crashing simultaneously.

The system ensures that if a request message m is sent
without failing, all the unfaulty replicas will receive it, and
eventually m will be decided in the consensus instance i,
which is called that the replica accepts (i,m). The Paxos
protocol can promise that at least half of the replicas will
accept (i,m), and no replica will accept (i, m̂) or (̂i,m),

where m 6= m̂ and i 6= î. Intuitively, all messages exist in
most replicas or in none of them. If the messages exist, the
order of messages on each replica is exactly the same, ie.,
total order. Every replica must handle messages in the total
order.

In our system, the request messages are about transaction
requests. According to the Paxos protocol, each transaction
has two states in a replica committed and applied (see Fig. 1).
The committed state represents that the transaction has been
consistent with most of replicas but is not executed, and
the state applied represents that it has been executed in this
replica.
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Fig. 1. Standard versus parallel state machine replication

III. PARALLEL SMR

For the standard SMR, each replica executes the transactions
sequentially following their total order (see Figure 1(a)).
Therefore, no matter how many thread resources are avail-
able, transactions can only be executed as if they were in a
single-threaded replica. With the development of high-speed
networks and efficient consensus protocols (eg., [18] [19]),
the CPU processing efficiency has becomes the next major
performance bottleneck of SMR. It is manifested by the
fact that the speed of applied is much slower than that of
committed. Although the concurrent execution of transactions
causes uncertainty, the consistency will not be broken if
only independent transactions are executed concurrently (see
Figure 1(b)). As we know, two transactions are independent
if they operate on different records or if they only read the
same records. For example, if a record is modified by one



transaction, and operated by the other transaction, then these
two transactions are said to be dependent or conflicted.

There have been some attempts (e.g. [11], [14], [15]) so
far to boost SMR with parallel execution by exploiting such
transaction dependencies. In this section, CBASE [11] and
its improved version batchCBASE [15] are discussed, and
conclusion of the motivation for our methods is presented in
the end. More details about other related work can be found
in Section VI.

To parallelize the execution of transactions, CBASE sets up
a scheduler for each replica. The main part of the CBASE al-
gorithm is shown in Algorithm 1. The core of the scheduler is a
dependency graph, which takes transactions as vertexes and the
dependencies among transactions as directed edges. It keeps
the partial order relationship (line 3) between transactions.
While accepting a transaction, the scheduler inserts it into
the dependency graph (lines 6-8). Based on the dependency
graph, the scheduler dispatches free transactions to those idle
threads (lines 18-19) in the thread pool for execution. Once a
transaction ti has been executed by a thread, the corresponding
vertex and edges should be removed from the graph (line 20).
Thus other transactions without predecessor dependencies can
be executed next.

Figure 2(a) shows how CBASE maintains the partial order
of transactions based on the dependency graph. These trans-
actions are agreed at each replica in a total order sequence
[t1t2t3t4t5t6]. Among them, t1t4t6, t3t5 and t2t6 are depen-
dent subsequences. For transactions in each such dependent
subsequence, their position on the dependent graph path is
determined by their relative order in the total order. For
example, t1 → t4 → t6 represents that t6 depends on t4, and
t4 depends on t1, because t1 arrives committed first, then t4,
and finally t6. New transactions need to be compared to all
transactions in the graph to determine the dependencies.

Intuitively, the overhead of building a dependent graph is
related to the number of nodes in the graph. Specifically,
the time complexity is O(n2). Experiments in batchCBASE
[15] confirm that detecting conflicts (dependencies) between
transactions is time consuming in heavy workloads. Therefore,
batchCBASE is designed to reduce the number of comparisons
by packing transactions into batches, as the example shown in
Figure 2(b). Compared with CBASE, the detecting overhead
of batchCBASE is reduced by a factor of the size of the
batch. Bitmaps technology is introduced to detect conflicts
between batches. It allocates a bitmap of 1,000Kbit for each
batch. If the intersection of two bitmaps is not empty, then
it can be determined that the two corresponding batches have
dependencies. Therefore, the time complexity of batchCBASE
dependency detection is O(l(n/m)2), where l is a constant
representing the time complexity of bit comparison using
bitmap, n is the number of transactions, and m is the size
of the batch. However, such batch-based method has a higher
the conflict probability between two batches. In theory, the
conflict probability between two random transactions is 1/n,
while the conflict probability between two batches is p =∑m

i=1

(
n
i

)
( i
n )

m(n−i
n )m. Thus, when the batch-based method

is applied, the conflict probability has an exponential increase
with respect to the batch size m.

Since transactions within each batch of batchCBASE is
executed sequentially, the parallelism between transactions
is reduced. In addition, if any two conflicting transactions
from each batches conflict with each, the two batches have
to be executed sequentially as well because the two batches
of transactions are considered to be conflicted in this case.
As shown in Figure 2(b), when the batch size is 2, it will
degenerate into a sequential execution as Figure 2(c).

Moreover, since the scheduler internal operations
of CBASE and batchCBASE, i.e. dgInsertTrans(ti),
dgRemoveTrans(ti), and dgGetTrans(ti), are mutually
exclusive, the call to any of these operations will lock the
whole dependency graph (line 10,12) until it is finished.
From this perspective, the scheduler runs in a single-threaded
mode, which introduces extra scheduling overhead.

Algorithm 1 CBASE (bacthCBASE) scheduler
1: data structures and variables
2: Transaction t {or Batch b for batchCBASE}
3: DG = (T,E) {dependency graph, or DG = (B,E)}
4: ...

5: The scheduler executes as follows:
6: while accept(ti ∈ T ) do {or Batch bi for batchCBASE}
7: dgInsertTrans(ti)

8: procedure dgInsertTrans(ti)
9: Lock(DG) {occupy the whole DG}

10: ...
11: Unlock(DG) {release lock of DG}

12: procedure T: dgGetTrans()
13: ... {omitted for simplicity}

14: procedure dgRemoveTrans(ti)
15: ... {similar to dgInsertTrans()}

16: Each worker thread executes as follows:
17: while ti ← dgGetTran() do
18: execute transaction ti {batchCBASE executes bi}
19: dgRemoveTrans(ti)

To sum up, (i) CBASE has a greater overhead of detecting
dependency; in addition (ii) batchCBASE increases the conflict
probability which makes it highly likely to degenerate into
sequential execution, (iii) as well as the running mode of their
scheduler operations is single-threaded. In our opinion, the
main reason behind this is that the granularity of the schedul-
ing object is not appropriate. As stated earlier, transactions that
access different records must be independent and need not be
detected for the dependency. As for CBASE, the scheduling
granularity is the transaction which is so fine-grained that each
dependency detection must be performed over all the other
transactions. As for batchCBASE, though the batch granularity
is coarse enough to reduce comparisons, it still does not fully
consider the dependency between transactions when selecting
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Fig. 2. CBASE and batchCBASE dependency graphs. (a) the dependency graph of CBASE. (b) and (c) show how batchCBASE works, i.e., t1t2 becomes
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transactions to form a batch. Therefore, it would be a better
solution to organize transactions into a specific index structure
according to the records to be accessed beforehand. In this
way, both efficient dependency detection and good parallelism
can be achieved.

IV. INDEX-BASED SCHEDULER MODEL

We propose a deterministic and efficient parallel SMR
scheduler for handling dependencies among transactions and
scheduling them to execute concurrently on all worker threads
available. The proposed method dedicate to improving the
performance of scheduler by designing a specific index struc-
ture and devising an elaborated concurrent scheduling scheme
accordingly.

A. Overall idea

The basic idea of the scheduler is as follows:
• The main part of the index structure is a simplified

Bloom filter constructed from a single HashMap. Each
key of the HashMap represents one record accessed by
the transactions. Hence, without actually constructing and
traversing the dependency graph, it can determine the
dependency between transactions when they fall into the
same Bloom filter bit by one hash.

• The value corresponding to each key of the HashMap is a
FIFO queue containing all the transactions accessing the
record of the key. Hence, any different transactions at the
heads of all transaction queues of the HashMap can be
executed concurrently.

• Based on the above index structure, it is easy to make
the scheduler concurrently perform scheduling operations
(i.e., insert, remove, get) with record-granularity lock,
which can guarantee safety and correctness as well.

Transactions and Records: Transaction ti is composed
of one or couples of commands and records. We denote
the total order of transaction OT as (T,<T ) where T =
{ti|i = 1, 2...} and <T represents the total order between
two transactions. Let the transaction ti’s record set Rti =
{rj |rj is one of the record accessed by ti’s commands} and
the transaction set accessing the common record rj as Trj =
{ti|rj is one of the records accessed by ti’s commands}.

Bloom Filter: The Bloom filter is constructed from a single
HashMap. Although a Bloom filter is usually composed of

more than one hash functions, the only one hash used here is
the one of the HashMap. The reason is that our Bloom filter
is used not only for testing the existence of dependencies but
also for indexing transaction queues according to the record
accessed. This is achieved by letting record r be the key to
be hashed and all the transactions in Tr be the corresponding
value mapped. Thus, for a transaction ti, the time complexity
of finding all dependent transactions related to record r is
O(1).

Transaction Queue: In order to provide efficient depen-
dency detection and concurrent execution, all transactions in
Tr is organized in a FIFO (First In First Out) queue as the
value part of our Bloom filter corresponding to the key r.
The transaction queue TQr of record r is actually a relative
order OTr

= (Tr, >T ) ⊆ OT . Thus, for a record r, the time
complexity of inserting a transaction at the end of or removing
a transaction from the head of the queue is O(1). Note that a
transaction may exist in different transaction queue because it
usually operate on multiple records.

Simplified Dependency Graph: All transaction queues to-
gether can form a simplified dependency graph which is
consistent in order <T but much simpler in structure com-
pared with the original complete dependency graph.Since the
dependency relation and relative order between transactions
are all transitive, it is not necessary to explicitly establish
a complete total order through pairwise comparison within
the transactions. Therefore, the proposed index structure can
effectively reduce the overhead of detection and scheduling.
Figure 3 exemplifies the basic idea of dependency graph
simplifying.

Free Transaction: In our scheduler, after a transaction ti
is inserted into scheduler, it is said to be free, iff ∀rj ∈
Rti , TQrj .head = ti. If a transaction is free, it can be
scheduled to be executed. If a transaction is still in transaction
queue, it means that the transaction is under execution or not
yet executed, in one word, unfinished.

Fine-grained lock: During the scheduling process, the
granularity of operation locking is a record in our scheduler.
It means that when the scheduler operates transaction ti
on the above index structure, the scheduler will only lock
those transaction queues corresponding to the records of Rti .
Obviously, operations at the same location of the HashMap
(i.e. transaction queues) are mutually exclusive, while opera-
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tions at different locations are concurrent. Thus the maximum
concurrency among these opeartions can be guaranteed.

B. Detailed algorithm

Algorithm 2 shows how our scheduler works in detail. The
dependency graph is not explicitly defined because transaction
queues can effectively replace it. When the system starts,
procedure Initialization() initializes a HashMap (line 7),
and then initializes N worker threads for waiting to execute
transactions (lines 8-10). The length of HashMap does can be
less than the number of records. In this case, there will be a
certain probability that the hash function maps two different
records to the same position. Fortunately, such false positives
do not violate the consistency because those transactions
that incorrectly fall into the same transaction queue will be
safely executed sequentially. Although such a false positive
transaction conflict may occur, it can guarantee that false
negatives will never occur.

Once the scheduler accepts tranasctions, it will insert them
into the index according to their total order (lines 12-14). As
stated earlier, a transaction can be scheduled to be executed, if
it does not depend on any other transactions, i.e., being free.
There are two situations. (i) For a newly accepted transaction,
if there is no dependency detected, it can be executed directly
after being inserted into the transaction queue after depen-
dency detection; (ii) For a transaction in the transaction queue
that has not been executed yet, it must be dependent and cannot
be executed until its dependent transactions are all executed
and removed. Therefore unlike CBASE and batchCBASE, our
scheduler does not require a separate dgGetTrans operation,
but combines it with the insert operation and the remove
operation to be dgInsertAndGet and dgRemoveAndGet
respectively. They are detailed as follows:

dgInsertAndGet: The transaction’s execution order of
dgInsertAndGet(ti) and dgInsertAndGet(tj) are subject
to the order of ti and tj in OT . Therefore, they can not
run concurrently. A call to dgInsertAndGet(ti) consists of
two operations, i.e., the operation of inserting ti into those
transaction queues that correspond to each record r ∈ Rti

Algorithm 2 Index-based scheduler
1: data structures and variables
2: Transaction t {transaction}
3: int N {number of worker threads}
4: TQueue TQ {transaction queue}
5: HashMap HM {HashMap}
6: procedure Initialization()
7: initialize HM
8: N← desired number of worker threads
9: for id = 1 . . . N do {initialize every worker thread}

10: create and start a worker thread thrid

11: The scheduler executes as follows:
12: while accept(ti ∈ T ) do {accept ti from T}
13: ti.run = true {used for ti executed exactly once}
14: dgInsertAndGet(ti) {scheduler inserts ti}

15: function bool: free(ti)
16: for r ∈ Rti do
17: TQr = HM(r) {Bloom Filter used as index}
18: if ti! = TQr.head then
19: return false

return true

20: procedure dgInsertAndGet(ti)
21: for r ∈ Rti do
22: TQr = HM(r)
23: Lock(TQr)
24: TQr.insert(ti)
25: if r == Rti .last∧!free(ti) then
26: ti.run = false

27: Unlock(TQr)
28: if ti.run then {no dependency afert insert}
29: notify worker threads to execute ti

30: procedure dgRemoveAndGet(ti)
31: for r ∈ Rti do
32: TQr = HM(r) {Bloom Filter used as index}
33: Lock(TQr)
34: TQr. remove(ti)
35: Unlock(TQr)
36: tj = TQr.head {candidate next to be executed}
37: if !tj .run ∧ free(tj) then
38: notify working threads to execute tj

39: Each worker thread executes as follows:
40: while ti ← notification from the scheduler do
41: execute transaction ti
42: dgRemoveAndGet(ti)

(lines 22-24), and the operation of determining whether ti
can be executed (lines 25-29) now. According to previous
description of Free Transaction, if ti appears at the head of
all corresponding transaction queues after insertion, it must
be free and can be executed immediately because ti is the
only transaction in those queues. More intuitively speaking, it



has no dependent incoming edges in the dependency graph.
Otherwise, ti can not be executed directly. Thus it will be
scheduled to worker threads in dgRemoveAndGet(tj). The
lock granularity of the operation is a record (line 23 and 27),
i.e. only one transaction queue corresponding to each record
in Rti is locked at a time. It does not lock all transaction
records at the same time, ensuring maximum concurrency with
operation dgRemoveAndGet(tj).

dgRemoveAndGet: Just like dgInsertAndGet, removing a
finished transaction ti from the index also needs to operate
on multiple transaction queues. With the help of HashMap in
our index, those transaction queues that correspond to each
record r ∈ Rti can be easily obtained (line 32). In our
scheduler, transactions to be executed or finished transactions
to be removed are kept at the head of corresponding transaction
queues, which makes the remove operation more efficient.
According to previous description of Free Transaction, if a
transaction ti is free, it must appear at the head of those
transaction queues TQr where record r ∈ Rti . Thus trans-
actions at the head of each TQr is checked for free after
removing finished transaction ti. Then free transactions can
be dispatched to available worker threads for executing next.
The execution checking is safe and does not need to acquire
locks of other transaction queues. Both dgInsertAndGet and
dgRemoveAndGet achieve the goal of not having to lock all
transaction queues. The operations of index-based scheduler
have the maximum concurrency when it is measured by the
number and granularity of the lock.

C. Correctness

The key to the design of the scheduler is to ensure the
security of scheduling operations and the consistency of the
state of the transaction execution results between replicas.
Here, we will highlight the security of deadlock-free and
hungry-free and the validity of replica consistency of our
index-based scheduler from data structure, lock granularity and
scheduling strategy. See the appendix for details.

1) Operation safety: In the case of fine-grained locks,
scheduler is deadlock-free and hungry-free. i) Deadlock-
free. First of all, for any two transactions ti and tj ,
the index-based scheduler will never produce scheduling
results where their operations dependent on each other.
Both dgInsertAndGet() and dgRemoveAndGet() are
required to be executed sequentially in FIFO order.
Thus deadlocks never occur; ii) Hungry-free. During
dgInsertAndGet operation, all free transactions are
scheduled to be executed directly by the scheduler. Non-
free transactions met in this operation can only turn free
during the following dgRemoveAndGet operations in
which those transactions they depend on are executed
and removed. Hence, the transaction scheduling process
is always driven by insertion and deletion operation.
As long as there are unexecuted transactions in the
transaction queue, they will eventually be executed. Thus
hunger never occurs.

2) Replica consistency: The transaction queue can ensure
<T order between transactions. Although only <T order
between any two adjacent transactions are maintained,
the transaction queues are still consistent with the com-
plete dependency graph w.r.t <T order. Suppose there
is competition for locks, and dgInsertAndGet(ti) and
dgRemoveAndGet(tj) operate on the same records r
in the same transaction queue TQr. No matter which
operation executes first, it will not affect the <T order
between each transactions. In addition, it is important for
a transaction to execute only once in order to keep replica
consistency. In order to determine whether a transaction
can be executed in both insert and deletion operations, a
flag run is defined in the transaction ti, it can guarantee
ti executed exactly once even when ti(line 39) appears
in both dgRemoveAndGet and dgInsertAndGet. From
the system perspective, Paxos protocol guarantees the
unique total order between replicas on which the same
index-based schedulers run as described in Algorithm 2,
even though the execution speed of each replica may be
different, the related records of replicas will reach the
same states whenever a transaction ti become applied.

V. EXPERIMENTS

This section will introduce the system prototype, experiment
configuration, experiment purpose, experiment method and
conclusion of our experiment.

A. System prototype

To evaluate the performance of our index-based scheduler,
called fastCBASE, we implemented an in-memory database
in C/S service model. This system provides three transaction
operations: PUT, GET and DELETE. Algorithm CBASE,
batchCBASE, and our fastCBASE are all implemented on it
with different schedulers. Clients sequentially send transaction
commands, and the replicas first agree on a total order of all
transactions received, and then the corresponding operations
are performed by the specific scheduler. The implementation
of Algorithm 1 follows [15]. We published the source code of
Algorithm 1 and our Algorithm 2 online [20].

B. Environment

Our experimental environment consists of a cluster of four
HP nodes. Three of them work as servers, playing the role of
proposer and acceptor in Paxos protocol, and each has 2 E5-
2620 CPU, 2.10GHz, hyper-threading, a total of 24 threads,
and 256G memory. The client is deployed in the other HP
node which has a four-way E7-4820 CPU, 2.0GHz, 8 cores per
channel, hyper-threading, a total of 64 threads. The operating
systems are all Ubuntu 18.04.2 LTS. The clients in the client
node send large number of transactions to make the servers
fully loaded. All applications are implemented by Go language
version go1.12.1. The communication within the cluster goes
through ER3200G2, a gigabit network switch.



C. Goals and methods

Since the index-based scheduler is proposed to ensure the
maximum concurrency among transactions as well as a lower
scheduler load, the main experimental purposes include:

• the speed-up achieved compared to state-of-art
• the scalability with a growing number of worker threads
• the impacts of scheduling overhead
• the false positive introduced by Bloom filter
• the impacts of conflicts on performance of scheduler
For the first point, in order to compare the performance

of our scheduler with other schedulers, we evaluate each
scheduler’s performance under conflict-free workloads, and
compare the performance under the same number of worker
threads with CBASE and batchCBASE.

For the second point, we evaluate the performance improve-
ment of our scheduler with an increasing number of threads
under the conflict-free workloads, and compare it with CBASE
and batchBASE.

For the third point, we can analyze with the above experi-
mental results.

For the fourth point, since batchCBASE uses two bitmaps
bitwise comparison methods in conflict detection and our
scheduler uses Bloom Filter, all of them will introduce
false positive conflict. We compare the false positive rate
introduced by these two scheduler models under different
bitmap(HashMap) sizes.

For the fifth points, we compare the performance changes
of our scheduler and batchCBASE under different conflict rate
workloads.

D. Speed-up analysis
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Fig. 4. Threads scalability for contention-free workloads

In order to observe the most obvious speed-up ability of
each scheduler, we analyze the throughput of each scheduler
in the case of workloads without conflicting transactions,
which is indicated by an average throughput each replica per
second. Figure 4 shows the system throughput of CBASE,
batchCBASE and our fastCBASE without conflict. The per-
formance of different batch sizes are tested since the batch
size of batchCBASE has a significant impact on it.

It can be seen that the traditional CBASE has a very low
performance, because the scheduler has a large overhead in the
dependency detection, which severely limits the throughput
of the whole system. The speed-up of CBASE is poor. As
the number of worker threads increases, its performance does
not increase significantly. With 16 threads, it only achieves a
throughput of about 1000Trans/S. Even though many worker
threads are avaliable, the scheduler cannot fully utilize them.

To improve the performance of the system, batchCBASE
sacrifices scheduling freedom (transaction sequential execution
within batch) for a lower number of comparisons. It can be
seen that the performance of batchCBASE is more signifi-
cantly improved than that of CBASE, which effectively solves
the problem of heavy scheduling workload in CBASE.

As can be seen from Figure 4, the performance of
batchCBASE increases linearly with the increase of the num-
ber of threads in 1, 2, 4, but it does not increase with batch
size, which indicates that neither one of the schedulers is a
performance bottleneck for the system, throughput is limited
by the number of available worker threads.

Our fastCBASE and batchCBASE have a similar perfor-
mance at 1, 2 threads, fastCBASE has a slightly lower per-
formance than batchCBASE when the number of threads is
4. That is because compared to the batch method, in order to
ensure the concurrency between each two transactions, the op-
erating system needs to allocate transactions to worker threads
in the granularity of single transaction, whereas batchCBASE
executes in the granularity of single batch, there is no need
for frequent scheduling within a single batch. Under the
conflict free workload, when the number of available threads
of the system increases, the operating system requires a higher
thread synchronization overhead compared to a less number
of threads. However, as the number of threads increases, the
performance gain of our method is much higher than that of
batchCBASE.

While reducing the overhead of comparison, batchCBASE
also potentially reduces the scheduling load. For example, for
10,000 transactions, when the batch size is 1000, there are
only 10 batches in the scheduler, and the scheduling load is
relatively low (so for batchCBASE, the scheduling load of
procedures is not the performance bottleneck of the scheduler).
The larger the batch of batchCBASE is, the lower the scheduler
workload and the better the performance will be. The speedup
of its performance gradually stabilizes gradually as the batch
increases, as shown in Figure 4. By the start of 8 threads, the
performance no longer increases linearly with the number of
threads in every batch. This is because although the number of
comparisons is reduced by batch, the load scheduling is still
relatively high compared to our scheduler.

Because of our elaborate concurrent scheduling process
based on the special index structure, although our scheduler
needs to manage each transaction, it is still even more efficient
than batchCBASE. Figure 4 shows that the throughput of
our scheduler in 8 and 16 threads is much higher than
batchCBASE. And unlike batchCBASE, the performance of
our method improves much near linearly with the increase of



the number of threads, so it has strong scalability.

E. Conflict rate analysis

Dependency detection based on the index structure of
fastCBASE becomes simple and efficient. If the records
corresponding to the new transaction conflict after hashing
with HashMap, it means that there has been the transaction
containing the record in the index. However, if the number of
records is greater than the length of the HashMap, then the
Bloom Filter may have false positive, i.e. different records will
be mapped to the same location in the HashMap. However, our
Bloom Filter is also used as index, so it can only be set up with
one hash function. Each batch in batchCBAse corresponds to a
bitmap. When comparing two batches, the bitmap is compared
by bitwise comparison to determine whether there is conflict,
so the false positive may also be generated. We compare
the conflict rate generated by our fastCBASE scheduler with
Bloom filter and compare the rate generated by batchCBASE
with the bitmap of each batch.

Before evaluating the conflict rate, recall mathematical for-
mula of conflict rate proposed in Section III. When the batch
is not executed, the probability of conflict between batches in
batchCBASE is an exponential times with respect to batch size
m. Although the conflict rate can be accurately represented,
the result is not intuitive, hence simulation experiments for
different schedulers are performed.

In the simulation, unfinished transactions in the scheduler
are stored in the transaction queue. For our scheduler, the
new transaction generated by the simulation is detected by
a Bloom Filter(the transaction queue and the Bloom Filter
used in simulation differ from the previous). The number at
each location of the Bloom Filter represents the number of
its conflict transactions. If the corresponding Bloom Filter’s
location of the newly generated transaction is not zero, the con-
flict is considered. When the conflict detection is completed,
the oldest transaction in the transaction queue is removed, the
corresponding location of the Bloom filter is reduced by 1,
and the new transaction is added to the transaction queue. If
the new transaction conflicts with all transactions, the conflict
rate is 100%. If it does not conflict with any transactions, the
conflict rate is 0. Therefore, the conflict rate can be defined
as: the conflict proportion of the new transaction and the
unfinished transactions in the queue at a given period of time
or at a specific length of the queue. In our simulation, we use
a fixed length of transaction queue to calculate conflict rate.
For batchCBASE, only the conflict detecion is different. If at
least one common bitmap position is set as 1 in both bitmaps
of the two batches, then a conflict is computed.

In our simulation experiment, a transaction contains only
one record. We randomly generate 108 records. Thus the prob-
ability of generating the same record twice in the simulation
is almost zero (10−8), which means conflict rate generated is
mainly caused by false positive. In our scheduler, the impact
on the conflict rate mainly comes from the size of HashMap.
The conflict rate of batchCBASE is also affected by the size
of bitmap and batch. We conducted 106 times simulation, the

length of the transaction queue is set to 10,000, ie., there are
average 10,000 unfinished transactions in the scheduler. The
corresponding batchCBASE has a graph size of 50 nodes when
the batch size is 200, and a graph size of 25 nodes when the
batch size is 400. And we set up the HashMap and bitmap size
to be 100K and 1M respectively. The experimental results are
show in Table I.

TABLE I
CONFLICT RATE

HashMap
size

fastCBASE conlict
rate

batchCBASE conlict
rate,batch=200

batchCBASE conlict
rate,batch=400

102400 0.000984% 32.558% 79.332%
1024000 0.0000975% 3.844% 14.796%

It can be seen from Table I that under the same configura-
tion, the conflict rate of batchCBASE is nearly 10,000 times
of the rate of fastCBASE, which meets the expectations of
the mentioned mathematical formula. As the size of HashMap
or bitmap increases, the conflict rate of fastCBASE and
batchCBASE will decrease, but batchCBase will amplify the
conflict rate due to batch, which will also increase the false
positive rate. Therefore, in reality, even if the conflict rate
is very low, batchCBASE will still be greatly affected, while
the false positive rate brought by our scheduler would hardly
affect the performance. Next experiments will confirm these
two aspects.

F. Speed-up analysis for conflict-prone workloads
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Fig. 5. Throughput under light conflict rate workload

Now we analyze the performance of our scheduler and
batchCBASE as the conflict rate increases. According to the
analysis in the previous section, the configuration that leads
to the lowest false positive rate is adopted, that is, the lengths
of HashMap of fastCBASE and bitmap of batchCBASE are
1M, and the batch size of batchCBASE is 200. According
to the analysis of the conflict rate in the previous section,
although the actual conflict rate is extremely low, batch method
will still amplify its effect. In addition to the sequential
execution of the internal transactions of the batch, the decrease
of its performance is significantly magnified. As Figure 5
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Fig. 6. Throughput under different conflict rate workloads

verifies, a slight increase in the conflict rate of batchCBASE
causes a drastic drop in the performance. In contrast, the
fastCBASE scheduler is not change significantly affected the
corresponding conflict rate.

Figure 6 shows that the throughput of our scheduler de-
creases with the increase of conflict rate. When the conflict
rate is 10%, only the throughput of 16 threads decreases. This
is because with the increase of the conflict rate, the parallelism
of transaction execution decreases, consequently the utilization
of multi-threading is reduced. For the same reason, when
the conflict rate is 20%, the throughput of 8 threads begins
to decrease. And as the conflict rate continuous to increase,
the performance gain caused by the increase of the threads’
number is significantly reduced. When the conflict rate is more
than 50%, i.e. more than half of the transactions cannot be
executed in parallel, the redundant threads cannot be utilized,
and the performance on different threads is approximately
equal.

Based on the results of Figure 5 and Figure 6, it can be
known that our scheduler can allow a maximum parallelism
among transactions. When the conflict rate reaches 20%, there
is still similar performance to the batchCBASE under conflict-
free workload. With the conflict rate increasing, our scheduler
is more robust.

VI. RELATED WORK

CBASE [11] and batchCBASE [15] propose to set up a
deterministic scheduler on the replica, and actually they are
late scheduling model [17], about which more details have
been described above. Different from CBASE, an early sched-
ule system model is proposed by [13]. By setting up a client
proxy, all client transactions are grouped according to transac-
tion’s semantic. Independent transactions can be allocated to
different groups, and dependent transactions must be allocated
to the same group. Each group of transactions is sent to all
servers by atomic broadcast. Serve-side proxy maps groups to
specific threads. A transaction may conflict with transactions
in multiple groups. Therefore, synchronization among groups
is required to ensure that the transaction is executed only once.
To optimize the process of thread scheduling in [13], a multi-
objective programming model [14] is proposed to maximize
parallelism and minimize execution time. The constraint is to

ensure the relative order among the transactions. In order to
achieve the optimal scheduling results, high time complexity
is required either. Therefore, the existence (or absence) of
an optimization model that combines early scheduling and
concurrency is still an open question.

Eve [12] implements deterministic parallelism through a
scheduler called mixer, which groups requests into batches,
and replicas execute batch transactions in parallel in a spec-
ulative manner. After the batch execution, the validity of
the replica status is checked during the validation phase. If
too many replicas are inconsistent, the replica will roll back
to the previous validated state and re-execute the command
sequentially. Eve is therefore a process of execute-validation.
Unlike Eve, Storyboard [21] enhances SMR through a pre-
diction mechanism that predicts the order of locks across
replicas based on application-specific knowledge. When the
prediction is correct, the transactions can be executed in
parallel. If the prediction does not match the execution path
of the transactions, the replica must establish a deterministic
execution sequence with other replicas through consensus
protocol. In this case, Storyboard stops the current execution
and repredicts the execution path. All replicas will re-execute
the transactions based on the new path.

Rex [22], an execute-agree-follow model, in which a pri-
mary machine is free to execute transactions concurrently at
first, and uncertain decisions are recorded in a partial order
trace, and then other secondary machines will receive the trace.
Finally, the secondary machine executes the same trace concur-
rently, which keeps consistency with the primary machine. Rex
detects the relationship of the transactions by transaction-to-
lock competition, encapsulates this detection mechanism into
c++ synchronization primitives, so any applications developed
with this synchronization primitive can generate trace. Traces
can be generated only after the transactions on the primary
server being executed, so replication on the secondary is a
passive replication process, requiring a higher reconfiguration
cost when the primary downtime occurs.

VII. CONCLUSION

In order to promise a high performance, the parallel state
machine replication requires an elaborated design to execute
independent transactions in parallel and dependent transactions
following their relative order. To achieve this goal, efficient
and correct dependency detection and scheduling strategies are
needed. The existing models cannot make a good balance in
these aspects, their advantages lead to their weakness, so their
scheduler is inclined to become the performance bottleneck
of the system. In this paper, an efficient scheduler based on
a specific index structure is designed to detect dependency,
express partial order relations and to schedule transactions,
which can ensure the maximum parallelism of the execution
between transactions to fully exploit the advantages of multi-
core processors, and also can keep consistency among replicas.
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APPENDIX

Definition 1 (Total order). A transaction sequence is a
pair(T ,<T ) where T is a set of transactions and <T⊆ T × T
is an irreflexive and antisymmetric total order (this total order
represents Paxos functionality)

Definition 2 (Conflict, dependency relation). Tow transactions
ti and tj conflict if Rti ∩ Rtj 6= ∅. Given a conflict relation
#T ⊆ C × C among transactions, the dependency relation `
is the transitive closure of <T ∩#T , so it is an partial order.

Definition 3 (Dependency Graph). Given a new transaction
ti, the dependency graph DG = (T,E) = TQ, TQ =
{TQr|∀r ∈ Rti , i = 1, 2...}, where T = {tj |∀tj ∈ TQ, j =
1, 2...} and every two adjacent transactions ti and tj in the
same TQp have the relation of ti ` tj , so by construction `
is equivalent to the edges E in DG.

Replica consistency 1. Transaction is executed exactly once.
Suppose the Rti of ti is {x1, x2...xl} and the Rtj of Tj is
{y1, y2...ym}, there exits some records {xi1, xi2...xin} equal
to {yj1, yj2...yjn} and in corresponding transaction queues
ti = tj .prior (when the remove operation of tj is over, now
tj .prior is the head of TQ(line 39)). At this time, ti and tj
detected whether to be executed in these two operations are
actually the same transaction.

We define dgInsertAndGet=(b 1©, 2©e), where 1© repre-
sents the insert operation (lines 22-24, Algorithm 2, the same
as folloing), 2© represents the detection operation (lines 25-
29) after insert, and “be” means all operations within it
are protected by lock(line 23,27 and line 33,35); Similarly,
dgRemoveAndGet=(b 3©e, 4©), where 3© represents the re-
move operation (lines 32-35), and 4© represents the detec-
tion (lines 36-38) after remove. The detection operation 2©
of dgInsertAndGet happens after performing operation 1©
on the last record xl of Rti . If detection operation 4© in
dgRemoveAndGet success on the transaction queue corre-
sponding to record yjn, the former detection operation in
dgInsertAndGet must be failed because the remove oper-
ation for tj on later transaction queue like yjn has not been
executed yet. In this most extreme case, all possible order
of processing are (b 1©, 2©e, b 3©e, 4©), (b 3©e, 4©, b 1©, 2©e ),
(b 3©e, b 1©, 4©, 2©e), (b 3©e, b 1©, 2©, 4©e ). According to Algo-
rithm 2, it can promise only 2© will schedule ti to be executed.
In other cases, the safety can be guarenteed following the fact
given below.

Replica consistency 2. The dependency graph (DG) is a
directed acyclic graph (DAG). According to Definition 3, TQ
can keep the relative order between dependent transactions,
i.e. `. Since ` is a partial order, DG is a DAG.

Operation safety 1. No deadlock. According to Replica
consistency 1, TQ is acyclic because there is no transactions
in TQ dependent on each other. Since both dgInsertAndGet
and dgRemoveAndGet operate the records in TQ in FIFO
order, there always exits transaction at the head of it’s corre-
sponding TQr as long as TO is not empty, which means that
it does not depend on others and is free to be executed.

Operation safety 2. No starvation. dgInsertAndGet(ti)
inserts the transactions at the end of queues, and detection
of dgRemoveAndGet(tj) checks the transactions at the head.
Based on Replica consistency 1, if ti 6= tj .prior, the detection
of tj .prior will be executed by operation 4©. As for ti, in

https://github.com/kisisjrlly/PSMR.git
https://github.com/kisisjrlly/PSMR.git


operation 2©, the flag runi will be set false, so the detection
of whether ti can be executed (line 37). As each transaction
ti has an order in <T and no deadlock, ti will be executed
eventually.
Replica consistency 3. Since OT is the same for all replicas,
and the execution is subject to ` of the dependent transactions,
there is no deadlock and no starvation. All transactions will
be executed exactly once, thus all the replicas will have the
same identical states after every transaction in T is finished.
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