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Abstract. Recent end-to-end Automatic Speech Recognition (ASR) sys-
tems demonstrated the ability to outperform conventional hybrid DNN/
HMM ASR. Aside from architectural improvements in those systems,
those models grew in terms of depth, parameters and model capacity.
However, these models also require more training data to achieve com-
parable performance.
In this work, we combine freely available corpora for German speech
recognition, including yet unlabeled speech data, to a big dataset of
over 1700h of speech data. For data preparation, we propose a two-
stage approach that uses an ASR model pre-trained with Connectionist
Temporal Classification (CTC) to boot-strap more training data from
unsegmented or unlabeled training data. Utterances are then extracted
from label probabilities obtained from the network trained with CTC
to determine segment alignments. With this training data, we trained
a hybrid CTC/attention Transformer model that achieves 12.8% WER
on the Tuda-DE test set, surpassing the previous baseline of 14.4% of
conventional hybrid DNN/HMM ASR.1

Index Terms: German speech dataset, End-to-end automatic speech recogni-
tion, hybrid CTC/attention, CTC-segmentation

1 Introduction

Conventional speech recognition systems combine Deep Neural Networks (DNN)
with Hidden Markov Models (HMM). The DNN serves as an acoustic model that
infers classes, or their posterior probabilities respectively, originating from hand-
crafted HMMs and complex linguistic models. Hybrid DNN/HMM models also
require multiple processing steps during training to refine frame-wise acoustic
model labels. In comparison to hybrid DNN/HMM systems, end-to-end ASR

? These authors contributed equally to this work.
1 This is a preprint article. The full paper [8] can be found at
https://doi.org/10.1007/978-3-030-60276-5_27
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simplifies training and decoding by directly inferring sequences of letters, or to-
kens, given a speech signal. For training, end-to-end systems only require the
raw text corresponding to an utterance. Connectionist Temporal Classification
(CTC) is a popular loss function to train end-to-end ASR architectures [5]. In
principle, its concept is similar to a HMM, the label sequence is modeled as
sequence of states, and during training, a slightly modified forward-backward
algorithm is used in the calculation of CTC loss. Another popular approach for
end-to-end ASR is to directly infer letter sequences, as employed in attention-
based encoder-decoder architectures [3]. Hybrid CTC/attention ASR architec-
tures combine these two approaches [19].

End-to-end models also require more training data to learn acoustic repre-
sentations. Many large corpora, such as Librispeech or TEDlium, are provided
as large audio files partitioned into segments that contain speech with tran-
scriptions. Although end-to-end systems do not need frame-wise temporal align-
ment or segmentation, an utterance-wise alignment between audio and text is
necessary. To reduce training complexity, previous works used frameworks like
sphinx [9] or MAUS [16] to partition speech data into sentence-length segments,
each containing an utterance. Those frameworks determine the start and the end
of a sentence from acoustic models (often HMMs) and the Viterbi algorithm.
However, there are three disadvantages in using these for end-to-end ASR: (1)
As only words in the lexicon can be detected, the segmentation tool needs a
strategy for out-of-vocabulary words. (2) Scaling the Viterbi algorithm to gen-
erate alignments within larger audio files requires additional mitigations. (3) As
these algorithms provide forced alignments, they assume that the audio contains
only the text which should be aligned; but for most public domain audio this
is not the case. So do for example all audio files from the Librivox dataset con-
tain an additional prologue and epilogue where the speaker lists his name, the
book title and the license. It might also be the case that the speaker skips some
sentences or adds new ones due to different text versions. Therefore, aligning
segments of large datasets, such as TEDlium [15], is done in multiple iterations
that often include manual examination. Unfortunately, this process is tedious
and error prone; for example, by inspection of the SWC corpus, some of those
automatically generated transcriptions are missing words in the transcription.

We aim for a method to extract labeled utterances in the form of cor-
rectly aligned segments from large audio files. To achieve this, we propose CTC-
segmentation, an algorithm to correctly align start and end of utterance seg-
ments, supported by a CTC-based end-to-end ASR network2. Furthermore, we
demonstrate additional data cleanup steps for German language orthography.
Our contributions are:

– We propose CTC-segmentation, a scalable method to extract utterance seg-
ments from speech corpora. In comparison to other automated segmentation
tools, alignments generated with CTC-segmentation were observed to more
closely correspond to manually segmented utterances.

2 The source code underlying this work is available at https://github.com/
cornerfarmer/ctc_segmentation

https://github.com/cornerfarmer/ctc_segmentation
https://github.com/cornerfarmer/ctc_segmentation
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– We extended and refined the existing recipe from the ASR toolkit kaldi
with a collection of open source German corpora by two additional corpora,
namely Librivox and CommonVoice, and ported it to the end-to-end ASR
toolkit ESPnet.

2 Related Work

2.1 Speech Recognition for German

Milde et al. [11] proposed to combine freely available German language speech
corpora into an open source German speech recognition system. A more detailed
description of the German datasets can be found in [11], of which we give a short
summary:

– The Tuda-DE dataset [14] combines recordings of multiple sentences con-
cerning various topics spoken by 180 speakers using five microphones.

– The Spoken Wikipedia Corpus (SWC, [2]) is an open source summary of
recordings of different Wikipedia articles made by volunteers. The transcrip-
tion already includes alignment notations between audio and text, but as
these alignments were often incorrect, Milde et al. re-aligned utterance seg-
ments using the Sphinx speech recognizer [9].

– The M-AILABS Speech Dataset [17] mostly consists of utterances extracted
from political speeches and audio books from Librivox. Audio and text has
been aligned by using synthetically generated audio (TTS) based on the text
and by manually removing intro and outro.

In this work, we additionally combine the following German speech corpora:

– CommonVoice dataset [1] consists of utterances recorded and verified by
volunteers; therefore, an utterance-wise alignment already exists.

– Librivox [10] is a platform for volunteers to publish their recordings of reading
public domain books. All recordings are published under a Creative Common
license. We use audio recordings of 579 books. The corresponding texts are
retrieved from Project Gutenberg-DE [6] that hosts a database of books in
the public domain.

Milde et al. [11] mainly used a conventional DNN/HMM model, as provided
by the kaldi toolkit [13]. Denisov et al. [4] used a similar collection of German
language corpora that additionally includes non-free pre-labeled speech corpora.
Their ASR tool IMS Speech is based on a hybrid CTC/attention ASR archi-
tecture using the BLSTM model with location-aware attention as proposed by
Watanabe et al. [19]. The architecture used in our work also is based on the
hybrid CTC/attention ASR of the ESPnet toolkit [20], however, in combination
with the Transformer architecture [18] that uses self-attention. As we only give a
short description of its architecture, an in-detail description of the Transformer
model is given by Karita et al. [7].
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2.2 Alignment and Segmentation Methods

There are several tools to extract labeled utterance segments from speech cor-
pora. The Munich Automatic Segmentation (MAUS) system [16] first transforms
the given transcript into a graph representing different sequences of phones by
applying predefined rules. Afterwards, the actual alignment is estimated by find-
ing the most probable path using a set of HMMs and pretrained acoustic models.
Gentle works in a similar way, but while MAUS uses HTK [21], Gentle is built
on top of Kaldi [13]. Both methods yield phone-wise alignments. Aeneas [12]
uses a different approach: It first converts the given transcript into audio by
using text-to-speech (TTS) and then uses the Dynamic Time Warping (DTW)
algorithm to align the synthetic and the actual audio by warping the time axis.
In this way it is possible to estimate begin and end of given utterance within the
audio file.

We propose to use a CTC-based network for segmentation. CTC was orig-
inally proposed as a loss function to train RNNs on unsegmented data. At the
same time, using CTC as a segmentation algorithm was also proposed by Graves
et al. [5]. However, to the best knowledge of the authors, while the CTC algorithm
is widely used for end-to-end speech recognition, there is not yet a segmentation
tool for speech audio based on CTC.

3 Methodology

3.1 CTC-Segmentation of Utterances

The following paragraphs describe CTC-segmentation, an algorithm to extract
proper audio-text alignments in the presence of additional unknown speech sec-
tions at the beginning or end of the audio recording. It uses a CTC-based end-
to-end network that was trained on already aligned data beforehand, e.g., as
provided by a CTC/attention ASR system. For a given audio recording the
CTC network generates frame-based character posteriors p(c|t, x1:T ). From these
probabilities, we compute via dynamic programming all possible maximum joint
probabilities kt,j for aligning the text until character index j ∈ [1;M ] to the
audio up to frame t ∈ [1;T ]. Probabilities are mapped into a trellis diagram by
the following rules:

kt,j =


max(kt−1,j · p(blank|t), kt−1,j−1 · p(cj |t)) if t > 0 ∧ j > 0

0 if t = 0 ∧ j > 0

1 if j = 0

(1)

The maximum joint probability at a point is computed by taking the most
probable of the two possible transitions: Either only a blank symbol or the next
character is consumed. The transition cost for staying at the first character is
set to zero, to align the transcription start to an arbitrary point of the audio file.

The character-wise alignment is then calculated by backtracking, starting off
the most probable temporal position of the last character in the transcription,
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i.e, t = argmaxt′ kt′,M . Transitions with the highest probability then determine
the alignment at of the audio frame t to its corresponding character from the
text, such that

at =


M − 1 if t > argmaxt′(kt′,M−1)

at+1 if kt,at+1
· p(blank|t+ 1) > kt,at+1−1 · p(cj |t+ 1)

at+1 − 1 else
. (2)

As this algorithm yields a probability ρt for every audio frame being aligned in
a given way, a confidence score sseg for each segment is derived to sort out utter-
ances with deviations between speech and corresponding text, that is calculated
as

sseg = min
j
mj with mj =

1

L

(j+1)L∑
t=jL

ρt. (3)

Here, audio frames that were segmented to correspond to a given utterance are
first split into parts of length L. For each of these parts, a mean value mj based
on the frame-wise probabilities ρt is calculated. The total probability sseg for a
given utterance is defined as the minimum of these probabilities per part mj .
This method inflicts a penalty on the confidence score on mismatch, e.g., even
if a single word is missing in the transcription of a long utterance.

The complexity of the alignment algorithm is reduced from O(M ·N) to O(M)
by using the heuristic that the ratio between the aligned audio and text position
is nearly constant. Instead of calculating all probabilities kt,j , for every character
position j one only considers the audio frames in the interval [t−W/2, t+W/2]
with t = jN/M as the audio position proportional to a given character position
and the window size W .

3.2 Data cleaning and text preparation

The ground truth text from free corpora, such as Librivox or the SWC corpus, is
often not directly usable for ASR and has therefore to be cleaned. To maximize
generalization to the Tuda-DE test dataset, this is done in a way to match the
style of the ground truth text used in Tuda-DE, which only consists of letters,
i.e. a-z and umlauts (ä, ü, ö, ß). Punctuation characters are removed and all
sentences with different letters are taken out of the dataset. All abbreviations and
units are replaced with their full spoken equivalent. Furthermore, all numbers
are replaced by their full spoken equivalent. Here it is also necessary to consider
different cases, as this might influence the suffix of the resulting word. Say,
“1800 Soldaten” needs to be replaced by “eintausendachthundert Soldaten”,
whereas “Es war 1800” is replaced according to its pronunciation by “Es war
achtzehnhundert”. The correct case can be determined from neighboring words
with simple heuristics. For this, the NLP tagger provided by the spacy framework
[7] is used.

Another issue arised due to old German orthography. Text obtained from
Librivox is due to its expired copyright usually at least 70 years old and uses
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old German spelling rules. For an automated transition to the reformed German
orthography, we implemented a self-updating lookup-table of letter replacements.
This list was compiled based on a list of known German words from correctly
spelled text.

4 Evaluation and Results

4.1 Alignment evaluation

In this section, we evaluate how well the proposed CTC-segmentation algorithm
aligns utterance-wise text and audio. Evaluation is done on the dev and test
set of the TEDlium v2 dataset [15], that consist of recordings from 19 unique
speakers that talk in front of an audience. This corpus contains labeled sentence-
length utterances, each with the information of start and end of its segment in
the audio recording. As these alignments have been done manually, we use them
as reference for the evaluation of the forced alignment algorithms. The compari-
son is done based on three parameters: the mean deviation of the predicted start
or end from ground truth, its standard deviation and the ratio of predictions
which are at maximum 0.5 seconds apart from ground truth. To evaluate the
impact of the ASR model on CTC-segmentation, we include both BLSTM as
well as Transformer models in the comparison. The pre-trained models3 were
provided by the ESPnet toolkit [20]. We compare our approach with three exist-
ing forced alignment methods from literature: MAUS, Gentle and Aeneas. To get
utterance-wise from phone-wise alignments, we determine the begin time of the
first phone and the end time of the last phone of the given utterance. As can be
seen in Tab. 1, segment alignments generated by CTC-segmentation correspond
significantly closer to ground truth compared to the segments generated by all
other tested alignment algorithms.

Fig. 1 visualizes the density of segmentation timing deviations across all
predictions. We thereby compare our approach using the LSTM-based model
trained on TEDlium v2 with the Gentle alignment tool. It can be seen that both
approaches have timing deviations smaller than one second for most predictions.
Apart from that, our approach has a higher density in deviations between 0 and
0.5 seconds, while it is the other way around in the interval from 0.5 to 1 second.
This indicates that our approach generates more accurately aligned segments
when compared to Viterbi- or DTW-based algorithms.

As explained in section 3.1, one of the main motivations for CTC-segmentation
is to determine utterance segments in a robust manner, regardless of preambles
or deviating transcriptions. To simulate such cases using the TEDlium v2 dev
and test set, we prepended the last N seconds of every audio file before its start
and appended the first M seconds to its end. Hereby, N and M are randomly
3 Configuration of the pre-trained models: The Transformer model has a self-attention
encoder with 12 layers of each 2048 units. The BLSTM model has a BLSTMP
encoder containing 4 layers with each 1024 units, with sub-sampling in the second
and third layer.
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Table 1: Accuracy of different alignment methods on the dev and test set of
TEDlium v2, compared via the mean deviation from ground truth, its standard
deviation and the ratio of predictions which are at maximum 0.5 seconds apart
from ground truth.

Mean Std <0.5s

Conventional Segmentation Approaches

MAUS (HMM-based using HTK) 1.38s 11.62 74.1%
Aeneas (DTW-based) 9.01s 38.47 64.7%
Gentle (HMM-based using kaldi) 0.41s 1.97 82.0%

CTC-Segmentation (Ours)

Hybrid CTC/att. BLSTM trained on TEDlium v2 0.34s 1.16 90.1%
Hybrid CTC/att. Transformer trained on TEDlium v2 0.31s 0.85 88.8%
Hybrid CTC/att. Transformer trained on Librispeech 0.35s 0.68 85.1%
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Fig. 1: Relative deviation, denoted in seconds, of segments generated by Gen-
tle and our CTC-segmentation compared to manually labeled segments from
TEDlium 2. CTC-segmentation exhibited a greater accuracy to the start of the
segment (top) in comparison with Gentle; an also was observed to be slightly
more accurate towards the end of the segments (bottom). The y axis denotes
density in a histogram with 60 bins.
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Table 2: Different alignment methods on the augmented dev and test set of
TEDlium v2. Similar to the evaluation procedure as in Tab. 1, but the audio
samples are augmented by adding random speech parts to their start and end.
In this the robustness of the different approaches is evaluated.

Mean Std <0.5s

Existing methods

MAUS (HMM-based using HTK) 3.18s 18.97 66.9 %
Aeneas (DTW-based) 10.91s 40.50 62.2 %
Gentle (HMM-based using kaldi) 0.46s 2.40 81.7 %

CTC-Segmentation (Ours)

BLSTM trained on TEDlium v2 0.40s 1.63 89.3 %
Transformer trained on TEDlium v2 0.35s 1.38 89.2 %
Transformer trained on Librispeech 0.40s 1.21 84.2 %

sampled from the interval [10, 30]s. Table 2 shows how the same algorithms
perform on this altered dataset. Especially the accuracy of the alignment tools
MAUS and Aeneas drops drastically when additional unknown parts of the au-
dio recording are added. Gentle and our method however are able to retain their
alignment abilities in such cases.

To conclude both experiments, alignments generated by CTC-segmentation
correspond closer to the ground truth compared to DTW and HMM based meth-
ods, independent of the used architecture and training set. By inspection, the
quality of obtained alignments varies slightly across domains and conditions: The
Transformer model with a more powerful encoder performs better compared to
the BLSTM model. Also, the alignments of a model trained on the TEDlium
v2 corpus are more accurate on average on its corresponding test and dev set;
this corpus contains more reverberation and noise from an audience than the
Librispeech corpus.

4.2 Composition of German Corpora for Training

Model evaluation is performed on multiple combinations of datasets, listed in
Tab.3. Thereby we build upon the corpora collection used by Milde et al. [11],
namely, Tuda-DE, SWC and M-AILABS. As [11], we also neglect recordings
made by the Realtek microphone due to bad quality. Additional to these three
corpora, we train our model on Common Voice and Librivox. Data preparation
of the Common Voice dataset only required to post-process the ground truth
text by replacing all numbers by their full spoken equivalent. As the Viterbi-
alignment provided by [11] for SWC is not perfect, with some utterances missing
its first words in the transcription, we realign and clean the data using CTC-
segmentation, as in Sec. 3.1. Utterance alignments with a confidence score sseg
lower than 0.22, corresponding to −1.5 in log space, were discarded. To perform
CTC-segmentation on the Librivox corpus, we combined the audio files with the
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corresponding ground truth text pieces from Project Gutenberg-DE [6]. Compa-
rable evaluation results were obtained from decoding the Tuda-DE dev and test
sets, as also used in [11].

In total, the cumulative size of these corpora spans up to 1772h, of which
we use three partially overlapping subsets for training: In the first configuration
that includes 649h of speech data, we use the selection as provided by Milde et
al. that includes Tuda-DE, SWC and M-AILABS. The second subset is created
by adding the CommonVoice corpus, resulting in 968h of training data. The
third selection conjoins the Tuda-DE corpus and CommonVoice with the two
CTC-segmented corpora, SWC and Librivox, to 1460h of speech data.

Table 3: Datasets used for training and evaluation.
Datasets Length Speakers Utterances

Tuda-DE train [14] TD 127h 147 55497
Tuda-DE dev [14] dev 9h 16 3678
Tuda-DE test [14] test 10h 17 4100

SWC [2], aligned by [11] SW 285h 363 171380
M-ailabs [17] MA 237h 29 118521

Common Voice [1] CV 319h 4852 279516
CTC-segmented SWC SW* 210h 363 78214

CTC-segmented Librivox [6,10] LV* 804h 251 368532

4.3 ASR configuration

For all experiments, the hybrid CTC/attention architecture with the Trans-
former is used. It consists of a 12 layer encoder and a 6 layer decoder, both with
2048 units in each layer; attention blocks contain 4 heads to each 256 units4. All
models were trained for 23 epochs using the noam optimizer. We did not use
data augmentation, such as SpecAugment. At inference time, the decoding of
the test and dev set is done using beam search with beam size of 16. To further
improve the results on the test and dev set, a language model was used to guide
the beam search. Language models with two sizes were used in decoding. The
RNNLM language models were trained on the same text corpus as used in [11]
for 20 epochs. The first RNNLM has two layers with 650 LSTM units per layer.
It achieves a perplexity of 8.53. The second RNNLM consists of four layer of
each 1024 units, with a perplexity of 6.46.

4.4 Discussion of Results

The benchmark results are listed in Tab. 4. First, the effects of using different
dataset combinations are inspected. By using the CommonVoice dataset in addi-
4 The default configuration of the Transformer model at ESPnet v.0.5.3
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Table 4: A comparison of using different dataset combinations. Word error rates
are in percent and evaluated on the Tuda-DE test and dev set.

Datasets ASR model LM Tuda-DE
TD SW MA CV SW* LV* h dev test

X X - - - - 412 TDNN-HMM [11] 4-gram KN 15.3 16.5
X X - - - - 412 TDNN-HMM [11] LSTM (2× 1024) 13.1 14.4
X X X - - - 649 TDNN-HMM [11] 4-gram KN 14.8 15.9

X X X - - - 649 Transformer RNNLM (2× 650) 16.4 17.2
X X X X - - 986 Transformer RNNLM (2× 650) 16.0 17.1
X X X X - - 986 Transformer RNNLM (4× 1024) 14.1 15.2
X - - X X X 1460 Transformer None 19.3 19.7
X - - X X X 1460 Transformer RNNLM (2× 650) 14.3 14.9
X - - X X X 1460 Transformer RNNLM (4× 1024) 12.3 12.8

tion to Tuda-DE, SWC and M-AILABS, the test WER decreases to 15.2%WER.
Further replacing SWC and M-AILABS by the custom aligned SWC and Lib-
rivox dataset decreased the test set WER down to 12.8%.

The second observation is that the language model size and also the achieved
perplexity on the text corpus highly influences the WER. The significant im-
provement in WER of 2% can be explained by the better ability of the big
RNNLM in detection and prediction of German words and grammar forms. For
example, Milde et al. [11] described that compounding poses are a challenge
for the ASR system; not recognized compounds resulted in at least two errors,
a substitution and an insertion error. This was also observed in a decoding
run without the RNNLM, e.g., “Tunneleinfahrt” was recognized as “Tunnel_ein
_fahrt”. By inspection of recognized transcriptions, most of these cases were
correctly determined when decoding with language model, even more so with
the large RNNLM.

Tab. 4 gives us further clues how the benefits to end-to-end ASR scale with
the amount of automatically aligned data. The benchmark results obtained with
the small language model improved by absolute 0.1% WER on the Tuda-DE
test set, after addition of the CommonVoice dataset, 319h of speech data. The
biggest performance improvement of 4.3% WER was obtained with the third
selection of corpora with 1460h of speech data. Whereas the composition of
corpora is slightly different in this selection, two main factors contributed to
this improvement: The increased amount of training data and better utterance
alignments using CTC-segmentation.

5 Conclusion

End-to-end ASR models require more training data as conventional DNN/HMM
ASR systems, as those models grow in terms of depth, parameters and model
capacity. In order to compile a large dataset from yet unlabeled audio recordings,
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we proposed CTC-segmentation. This algorithm uses a CTC-based end-to-end
neural network to extract utterance segments with exact time-wise alignments.

Evaluation of our method is two-fold: As evaluated on the hand-labeled dev
and test datasets from TEDlium v2, alignments generated by CTC-segmentation
were more accurate compared to those obtained from Viterbi- or DTW-based
approaches. In terms of ASR performance, we build on a composition of German
speech corpora [11] and trained an end-to-end ASR model with CTC-segmented
training data; the best model achieved 12.8% WER on the Tuda-DE test set, an
improvement of 1.6% WER absolute in comparison with the conventional hybrid
DNN/HMM ASR system.
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