Skip to main content

Accelerating Reactions at the DNA Can Slow Down Transient Gene Expression

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12314))

Abstract

The expression of a gene is characterised by the upstream transcription factors and the biochemical reactions at the DNA processing them. Transient profile of gene expression then depends on the amount of involved transcription factors, and the scale of kinetic rates of regulatory reactions at the DNA. Due to the combinatorial explosion of the number of possible DNA configurations and uncertainty about the rates, a detailed mechanistic model is often difficult to analyse and even to write down. For this reason, modelling practice often abstracts away details such as the relative speed of rates of different reactions at the DNA, and how these reactions connect to one another. In this paper, we investigate how the transient gene expression depends on the topology and scale of the rates of reactions involving the DNA. We consider a generic example where a single protein is regulated through a number of arbitrarily connected DNA configurations, without feedback. In our first result, we analytically show that, if all switching rates are uniformly speeded up, then, as expected, the protein transient is faster and the noise is smaller. Our second result finds that, counter-intuitively, if all rates are fast but some more than others (two orders of magnitude vs. one order of magnitude), the opposite effect may emerge: time to equilibration is slower and protein noise increases. In particular, focusing on the case of a mechanism with four DNA states, we first illustrate the phenomenon numerically over concrete parameter instances. Then, we use singular perturbation analysis to systematically show that, in general, the fast chain with some rates even faster, reduces to a slow-switching chain. Our analysis has wide implications for quantitative modelling of gene regulation: it emphasises the importance of accounting for the network topology of regulation among DNA states, and the importance of accounting for different magnitudes of respective reaction rates. We conclude the paper by discussing the results in context of modelling general collective behaviour.

TP’s research is supported by the Ministry of Science, Research and the Arts of the state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984), JK’s research is supported by Committee on Research of Univ. of Konstanz (AFF), 2020/2021. PB is supported by the Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the VEGA grant 1/0347/18. All authors would like to acknowledge Jacob Davidson and Stefano Tognazzi for useful discussions and feedback.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Becker, J., Brackbill, D., Centola, D.: Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. 114(26), E5070–E5076 (2017)

    Google Scholar 

  2. Beica, A., Guet, C.C., Petrov, T.: Efficient reduction of kappa models by static inspection of the rule-set. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 173–191. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_10

    Chapter  Google Scholar 

  3. Bintu, L.: Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15(2), 125–135 (2005)

    Article  Google Scholar 

  4. Bo, S., Celani, A.: Multiple-scale stochastic processes: decimation, averaging and beyond. Phys. Rep. 670, 1–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016)

    Article  MATH  Google Scholar 

  6. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339 (2000)

    Article  Google Scholar 

  7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  8. Gjorgjieva, J., Drion, G., Marder, E.: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance. Curr. Opin. Neurobiol. 37, 44–52 (2016)

    Article  Google Scholar 

  9. Goban, A.N., Radulescu, O.: Dynamic and static limitation in multiscale reaction networks, revisited. Adv. Chem. Eng. 34, 103–107 (2008)

    Article  Google Scholar 

  10. Greenham, K., McClung, C.R.: Time to build on good design: resolving the temporal dynamics of gene regulatory networks. Proc. Natl. Acad. Sci. 115(25), 6325–6327 (2018)

    Article  Google Scholar 

  11. Guet, C., Henzinger, T.A., Igler, C., Petrov, T., Sezgin, A.: Transient memory in gene regulation. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 155–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3_9

    Chapter  MATH  Google Scholar 

  12. Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296(5572), 1466–1470 (2002)

    Article  Google Scholar 

  13. Gunawardena, J.: Time-scale separation-Michaelis and Menten’s old idea, still bearing fruit. FEBS J. 281(2), 473–488 (2014)

    Article  Google Scholar 

  14. da Costa Pereira Innocentini, G., Forger, M., Ramos, A.F., Radulescu, O., Hornos, J.E.M.: Multimodality and flexibility of stochastic gene expression. Bull. Math. Biol. 75(12), 2360–2600 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer, New York (1981). https://doi.org/10.1007/978-1-4757-4213-8

    Book  MATH  Google Scholar 

  16. Kevorkian, J., Cole, J.D., Nayfeh, A.H.: Perturbation methods in applied mathematics. Bull. Am. Math. Soc. 7, 414–420 (1982)

    Article  Google Scholar 

  17. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7(1), 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8(2), 344–356 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)

    Article  Google Scholar 

  20. Lorenz, J., Rauhut, H., Schweitzer, F., Helbing, D.: How social influence can undermine the wisdom of crowd effect. Proc. Natl. Acad. Sci. 108(22), 9020–9025 (2011)

    Article  Google Scholar 

  21. Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits. PLoS Comput. Biol. 7(2), e1001083 (2011)

    Article  Google Scholar 

  22. McAdams, H.H., Arkin, A.: It’s a noisy business! genetic regulation at the Nano-molar scale. Trends Genet. 15(2), 65–69 (1999)

    Article  Google Scholar 

  23. Murray, J.D.: Mathematical Biology: I. Springer, Introduction (2003)

    Book  Google Scholar 

  24. Myers, C.J.: Engineering Genetic Circuits. CRC Press, Boca Raton (2009)

    Google Scholar 

  25. Newby, J., Chapman, J.: Metastable behavior in Markov processes with internal states. J. Math. Biol. 69(4), 941–976 (2013). https://doi.org/10.1007/s00285-013-0723-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Pagliara, R., Leonard, N.E.: Adaptive susceptibility and heterogeneity in contagion models on networks. IEEE Trans. Automatic Control (2020)

    Google Scholar 

  27. Pájaro, M., Otero-Muras, I., Vázquez, C., Alonso, A.A.: Transient hysteresis and inherent stochasticity in gene regulatory networks. Nat. Commun. 10(1), 1–7 (2019)

    Article  Google Scholar 

  28. Parmar, K., Blyuss, K.B., Kyrychko, Y.N., Hogan., S.J.: Time-delayed models of gene regulatory networks. In: Computational and Mathematical Methods in Medicine (2015)

    Google Scholar 

  29. Peleš, S., Munsky, B., Khammash, M.: Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125(20), 204104 (2006)

    Article  Google Scholar 

  30. Rothenberg, E.V.: Causal gene regulatory network modeling and genomics: second-generation challenges. J. Comput. Biol. 26(7), 703–718 (2019)

    Article  Google Scholar 

  31. Santillán, M., Mackey, M.C.: Why the lysogenic state of phage \(\lambda \) is so stable: a mathematical modeling approach. Biophys. J. 86(1), 75–84 (2004)

    Article  Google Scholar 

  32. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor. 50(9), 093001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Segal, E., Widom, J.: From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10(7), 443–456 (2009)

    Article  Google Scholar 

  34. Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-steady-state assumption: reducing the model but not the noise. J. Chem. Phys. 134(15), 154109 (2011)

    Article  Google Scholar 

  35. Trofimenkoff, E.A.M., Roussel, M.R.: Small binding-site clearance delays are not negligible in gene expression modeling. Math. Biosci. 108376 (2020)

    Google Scholar 

  36. Zhong, Y.D., Leonard, N.E.: A continuous threshold model of cascade dynamics. arXiv preprint arXiv:1909.11852 (2019)

  37. Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quant. Biol. 3(4), 168–181 (2015). https://doi.org/10.1007/s40484-015-0056-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Petrov .

Editor information

Editors and Affiliations

Appendices

Appendix A: Mechanism of Gene Regulation - Examples

Example 1 (basal gene expression)

Basal gene expression with \({\mathsf {RNAP}}\) binding can be modelled with four reactions, where the first reversible reaction models binding between the promoter site at the \({\mathsf {DNA}}\) and the polymerase, and the second two reactions model the protein production and degradation, respectively:

$$\begin{aligned} {\mathsf {DNA}},{\mathsf {RNAP}}&\leftrightarrow {\mathsf {DNA}}.{\mathsf {RNAP}}\hbox { at rates }k,k^- \\ {\mathsf {DNA}}.{\mathsf {RNAP}}&\rightarrow {\mathsf {DNA}}.{\mathsf {RNAP}}+\mathsf {P} \hbox { at rate } \alpha \\ \mathsf {P}&\rightarrow \emptyset \ \hbox { at rate } \beta . \end{aligned}$$

The state space of the underlying CTMC \(S\cong \{\texttt {0},\texttt {1}\}\times \{0,1,2,\ldots \}\), such that \(s_{(\texttt {1},x)}\in S\) denotes an active configuration (where the \({\mathsf {RNAP}}\) is bound to the \({\mathsf {DNA}}\)) with \(x\in {\mathbb {N}}\) protein copy number.

Example 2 (adding repression)

Repressor blocking the polymerase binding can be modelled by adding a reaction

$$\begin{aligned} {\mathsf {DNA}},R&\leftrightarrow {\mathsf {DNA}}.R \end{aligned}$$

In this case, there are three possible promoter configurations, that is, \(S\cong \{{\mathsf {DNA}},{\mathsf {DNA}}.{\mathsf {RNAP}},{\mathsf {DNA}}.R\}\times \{0,1,2,\ldots \}\) (states \({\mathsf {DNA}}\) and \({\mathsf {DNA}}.R\}\) are inactive promoter states).

Appendix B: Derivation of Moment Equations

Multiplying the master equation (2) by \(n(n-1)\ldots (n-j+1)\) and summing over all \(n\ge 0\) yields differential equations [37]

$$\begin{aligned} \frac{\mathrm {d}\varvec{\nu }_j}{\mathrm {d}t} = \varvec{A} \varvec{\nu }_j + j\left( \varvec{\varLambda }_{\varvec{k}} \varvec{\nu }_{j-1} - \delta \varvec{\nu }_j \right) \end{aligned}$$
(B1)

for the factorial moments

$$\begin{aligned} \varvec{\nu }_j(t) = \sum _{n=0}^\infty n(n-1)\ldots (n- j + 1) \varvec{p}_n(t). \end{aligned}$$
(B2)

The quantities (4)–(6) can be expressed in terms of the factorial moments as

$$\begin{aligned} \varvec{p} = \varvec{\nu }_0,\quad \langle n \rangle = \varvec{1}^\intercal \varvec{\nu }_1,\quad \varvec{f} = \varvec{\nu }_1 - \left( \varvec{1}^\intercal \varvec{\nu }_1 \right) \varvec{\nu }_0,\quad \sigma ^2 = \varvec{1}^\intercal \varvec{\nu _2} + \varvec{1}^\intercal \varvec{\nu }_1 - \left( \varvec{1}^\intercal \varvec{\nu }_1 \right) ^2. \end{aligned}$$
(B3)

Differentiating (B3) with respect to t and using (B1), one recovers equations (7)–(9).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bokes, P., Klein, J., Petrov, T. (2020). Accelerating Reactions at the DNA Can Slow Down Transient Gene Expression. In: Abate, A., Petrov, T., Wolf, V. (eds) Computational Methods in Systems Biology. CMSB 2020. Lecture Notes in Computer Science(), vol 12314. Springer, Cham. https://doi.org/10.1007/978-3-030-60327-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60327-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60326-7

  • Online ISBN: 978-3-030-60327-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics