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Abstract. We present an original automated framework for estimat-
ing gestational age (GA) from fetal ultrasound head biometry plane im-
ages. A novelty of our approach is the use of a Bayesian Neural Network
(BNN), which quantifies uncertainty of the estimated GA. Knowledge of
estimated uncertainty is useful in clinical decision-making, and is espe-
cially important in ultrasound image analysis where image appearance
and quality can naturally vary a lot. A further novelty of our approach
is that the neural network is not provided with images pixel size, thus
making it rely on anatomical appearance characteristics and not size.
We train the network using 9,299 scans from the INTERGROWTH-21st
[22] dataset ranging from 1440 weeks to 4246 weeks GA. We achieve
average RMSE and MAE of 9.6 and 12.5 days respectively over the GA
range. We explore the robustness of the BNN architecture to invalid
input images by testing with (i) a different dataset derived from routine
anomaly scanning and (ii) scans of a different fetal anatomy.
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1 Introduction

Knowledge of gestational age (GA) is important in order to schedule antena-
tal care, and to define outcomes, for example on whether a newborn is term
or preterm [24]. Charts or formulas are used to estimate GA from ultrasound-
based fetal measurements [21]. Fetal measurements are taken in standard imag-
ing planes [24], which in the case of the head biometry plane, rely on the visibility
of specific fetal brain structures. Classic GA estimation in a clinical setting relies
on manual ellipse fitting by a trained sonographer, which has both significant
intra-observer variability and skilled labour requirements [28].

In this paper we set out to assess the feasibility of estimating GA directly
from image appearance rather than geometric fitting of ellipses of lines which is
known to be difficult to automate across gestation. GA estimation based directly
on image appearance would reduce the need for human interaction of automated
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biometry after image capture. Further, significant progress has been made in
automatic plane finding [2, 12], meaning that our algorithm might, in the future,
be incorporated in a fully automated ultrasound-based GA estimation solution
for minimally trained healthcare professional in a global health setting [23].

There have been previous attempts to automate GA estimation. These in-
clude GA estimation methods based on automating ellipse-fitting on fetal head
images. Ciurte et al. [3] formalize the segmentation as a continuous min cut
problem on ultrasound images represented as a graph. However, the method
is semi-supervised and requires sonographer intervention. [10] directly estimate
HC, but rely on predetermined ultrasound sweep protocols. [26] use a multi-task
convolutional neural network to fit an ellipse on a fetal head image. However,
all the methods above rely on clinical fetal growth charts for conversion of fetal
measurements to GA, and therefore are subject to the same uncertainties.

Namburete et al. [18] and [19] use regression forests with bespoke features
and convolutional neural networks to directly regress GA from 3D ultrasound
data without regressing from fetal measurements. However, such models only
provide point estimates of GA without taking into account uncertainties caused
by anatomical or image variations, and rely on costly 3D ultrasound volumes
and probes.

We therefore use a Bayesian Neural Network (BNN) [16] to perform regres-
sion directly on two dimensional fetal trans-thalamic (TT) plane images in both
the second and third trimesters. A Bayesian Neural Network learns the distribu-
tion across each individual trainable parameter. This allows the BNN to predict
probability distributions instead of point estimates, which allows the calculation
of uncertainty estimates that can further inform clinical decision making. BNNs
have been used in medical disease classification [6,15] and brain segmentation
[25,17].

Contributions We use a Bayesian Neural Network (BNN) trained on fetal
trans-thalamic (TT) plane images for GA estimation. Firstly, we directly esti-
mate GA from images of the fetal TT plane. Secondly, we train the BNN and an
auxiliary isotonic regression model [13] to predict calibrated aleatoric and epis-
temic uncertainties (definitions of these terms are given in Sect. 1.1). Thirdly,
we show that the Bayesian treatment of inference allows for automatic detection
against unexpected and out-of-distribution data. Specifically, we test the trained
BNNs on datasets outside of the training distribution; (i) a test dataset of TT
planes taken with a different ultrasound machine and (ii) a test dataset of fetal
US images other than the T'T plane on the original ultrasound machine.

1.1 Neural Network Architecture

Due to computer memory limitations, we investigate the use of VGG-16 [9] as
the backbone of a Bayesian Neural Network in a regression context as a proof
of concept (See Fig 1.). Other backbones e.g. ResNets [| could also be used.



Title Suppressed Due to Excessive Length 3

Training Data 13
Global Fully 14
Average Connected . 15
Pooling Layer u 16
> > » 17
42
L . )
VGG-16 like Architecture Backbone Estimation of Aleatoric Uncertainty

Fig. 1. The overview of the Bayesian Neural Network. The VGG-like backbone consists
of five convolutional blocks and a global average pooling layer at the top to act as a
regression layer. Each convolutional block CB consists of two convolutional layers, a
batch normalization layer and a max pooling layer. Each CB ©***! was parameterized
by the shared filter size, kernel size and stride respectively. The VGG-16 like backbone,
in this notation, is CB %32 - ¢B 128:3.2 _ 0B 256:3.2 _ 0B 51232 _ Op 51232

Epistemic and Aleatoric Uncertainties We can break down uncertainty es-
timates into uncertainty over the network weights (epistemic uncertainty) and ir-
reducible uncertainties over the noise inherent in the data (aleatoric uncertainty)
[11]. As training data size increases, in theory epistemic uncertainty converges
to zero. This allows us to discern between uncertainties where more image data
would be useful and uncertainties that are inherent in the model population.
Research has also found that predicted uncertainty estimates from BNNs may
be mis-calibrated to actual empirical uncertainty [8,14]. A well calibrated re-
gressive model implies that a prediction y with a predicted p confidence interval
will lie within the confidence interval p of the time for all p € 0,1. We therefore
additionally perform calibration [13] of uncertainty estimates.

Probabilistic Regression We use a probabilistic network in order to estimate
the aleatoric and epistemic uncertainties in image-based prediction.

To estimate epistemic uncertainty, we use mean-field variational inference [7]
to approximate learnable network parameters with a fully factorized Gaussian
posterior (W) ~ N(u,0), where W represents learnable weights, u represents
the parameter mean and o represents the standard deviation of the parameter.

Gaussian posteriors and priors both reduce the computational cost of esti-
mating the evidence lower bound (ELBO) [27], which is required as the prior
p(W) is computationally intractable. The use of mean-field variational inference
doubles the network size for each backbone network, as each weight is parame-
terized by the learned means and standard deviation weights.

To estimate aleatoric uncertainty, a network is trained to minimize the neg-
ative log likelihood between the ground truth GA and a predicted factorized
Gaussian, which is used as an approximation of the aleatoric uncertainty. Dur-
ing the forward pass, samples are drawn from the parameterized network weight
distributions. The variation in the mean predicted GA from model weight per-
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turbations can then be used as an estimate of epistemic uncertainty. The total
predictive uncertainty is therefore the sum of epistemic and aleatoric uncertain-
ties:

Var(y) ~ EB(5%) - E(9)* + E(5°) (1)
—_——— ——
Epistemic Uncertainty  Aleatoric Uncertainty

where §j represents the predicted mean, 62 the predicted variance and expecta-
tions are sampled using Monte Carlo inference at test time.
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Fig. 2. An overview of the uncertainty calibration results, here on a trained VGG-16
network with cyclical KL annealing. (a) is the uncalibrated uncertainty interval plot
on the training set, (b) is the predicted auxiliary regression model, and (c) shows the
final calibrated uncertainty on the test set with reduced calibration error.

Uncertainty Calibration Intuitively, for every predicted confidence interval,
the predicted GA should be within the interval with the predicted probability p;.
However, the use of variational inference and approximate methods means that
predicted uncertainties may not accurately reflect actual empirical uncertainties
[13]. We therefore calibrate uncertainty predictions using an auxiliary isotonic
regression model trained on the training set (Fig 2). We quantify the quality of
the uncertainty calibration using the calibration error:

Brr =3 0y = 1) 2
m
where p; and p; are the predicted confidence level and actual confidence lev-
els respectively, and m is the number of confidence levels picked. In this paper,
we pick m=10 intervals with p; confidence intervals equally distributed between
[0,1]. Confidence intervals were calculated based on a two-sided confidence in-
terval test of the predicted Normal distribution.



Title Suppressed Due to Excessive Length 5

Implementation Details Both networks were trained from scratch with learn-
able parameters initialized from a N (0, 1) distribution. The network architecture
is outlined in Figure 1. The loss function therefore takes the term:

1 1 =\
Etotalzﬁz_i (y ,u) + Aepoch) L1, (3)

0

where y is the ground truth GA, p; and o; indicates the predicted mean GA and
scale of the aleatoric uncertainty, Ly, is the Kullback-Leibler loss of the weight
parameters.

Networks empirically do not successfully converge with a A(epoch) = k if k
is constant. We therefore explore two annealing schedules such that A(epoch) is
(i) either a monotonic function that starts at zero at the first epoch and scales
linearly to one by the hundredth epoch [1] or a (ii) cyclical annealing schedule
with A(epoch) cyclically annealing between 0 and 1 every 100 epochs [5].

Networks were trained with the Adam optimizer under default parameters
with a batch size of 50, and trained for a minimum of 300 epochs until valida-
tion loss stopped decreasing. All networks were implemented using Tensorflow
Probability [4], and trained on a Intel Xeon E5-2630 CPU with a NVIDIA GTX
1080 Ti GPU.

2 Dataset

We use three clinical ultrasound datasets, designated Dataset A, B and C.
Dataset A was used to train and validate the network, whilst Dataset B and
C were only used during external testing.

Dataset A In Dataset A, derived from the INTERGROWTH-21st study [22],
ultrasound scans of enrolled women were performed every 5 4+ 1 weeks of ges-
tation, leading to ultrasound image scans from GAs ranging from 1440 weeks
to 4146 weeks. We used the TT plane image to regress to find the GA, as the
plane shows features that vary in anatomical appearance as the fetus grows [20].

Ground truth GAs for Dataset A are defined as the date from the last men-
strual period (LMP) and further validated with a crown-rump measurement in
the first trimester that agreed with the LMP to within 7 days. Images were
captured using the Philips HD-9 (Philips Ultrasound, Bothell, WA, USA) with
curvilinear abdominal transducers (C52, C63, V73).

Using a 90/1/9 train/validation/test split on the subjects, we generated a
training set (8369/3016 images/subjects), validation set (91/35) and test set
(849/300) (Fig 3).

Dataset B This dataset consists of routine second and third trimester scan-
sUltrasound scans had been acquired using a Voluson E8 version BT18 (General
Electric Healthcare, Zipf, Austria) which had different imaging characteristics
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Fig. 3. An overview of the GA distribution in Dataset A for (a) train and (b) validation
and test sets.

and processing algorithms to the machine used for Dataset A. We extracted
N=20 TT planes from clinical video recordings from different subjects. GAs
inferred from growth charts ranged from 18+6 weeks to 2241 weeks.

Dataset C This dataset consists of 6,739 images taken with the same image
acquisition parameters and GA ranges as dataset A. However, the images were
of the fetal femur plane instead of the T'T plane.

Dataset Pre-Processing and Augmentation All images had sonographer
measurement markings removed using automated template matching and a me-
dian filter, and were resized to 224x224 pixels. Images were then further visually
checked to be satisfactory T'T plane images by an independent sonographer. Pixel
intensities were normalized to [-1, 1]. During training, we augment the dataset by
randomly flipping the image horizontally, random resizing of the image by +10%
and by shifting the image by up to 20 pixels vertically and horizontally. We find
this reasonable, as variation in TT plane image appearance in each dataset for
the same GA exceed this range. We also normalize GA to [-1, 1]. However, we do
not give pixel size information to the network to reduce the impact of biometric
measurement information.

3 Results

We present the results of both BNNs on the datasets separately.

Dataset A The results for networks with both annealing functions are sum-
marized in Table 1. The network that trained with cyclical Kullback-Leibler
annealing outperformed monotonic annealing. This may be due to the fact that
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Table 1. Regression metrics for the investigated BNNs backbone architectures. Best
results for each metric for 2D images are in bold. RMSE and MAE Metrics are calcu-
lated with the maximum likelihood for both aleatoric and epistemic uncertainties. For
completeness, we include the results of [19] as a comparison. However, our results are
based on regression on a single 2D ultrasound image, compared to a 3D ultrasound
volume in their work.

1 RMSE (days) p MAE (days) Calibration Error No. of Parameters

VGG-16 with KL Cycling 9.6 12.5 0.24/7.4e-4 18.8M
VGG-16 with KL Annealing 12.2 15.4 0.21/1.2e-3 18.8M
VGG-16 (Deterministic) 11.9 14.5 N/A 9.4M
3D Convolutional Regression Network [19] 7.72 N/A 6.1M

setting A(epoch) to zero dramatically changes the hyper surface of the loss func-
tion, whilst the monotonic annealing creates a smoother change of the hyper
surface which the network can get comfortable with especially in local minima.

During inference, we estimate epistemic uncertainty with Monte Carlo it-
erations of n=100. We find that the network tends to overestimate predictive
uncertainties, leading to high uncertainty calibration error (Fig. 2). However,
the errors are consistent and therefore lend themselves to easy calibration, sig-
nificantly reducing uncertainty error once calibrated.

Plotting predictive uncertainty against GA shows that uncertainty increases
with increasing gestational age (Fig. 4). This may be because biological variation
increases with increasing fetal growth. This is observed in clinical fetal growth
charts. This is also supported by the higher slope that aleatoric uncertainty has
with increasing GA compared to epistemic uncertainty.

Evaluation on Dataset B We evaluate the performance of the model on
Dataset B, where the image is taken on a different ultrasound machine and in a
different context, but the image is of the TT plane. We find that the distribution
of uncertainties is higher than the original test dataset (Fig. 5).
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Fig. 4. An overview of the results of the model trained with Kullback-Leibler cyclical
annealing. On the left, we show a scatterplot of the overall predicted GA against GT
GA with r2of 0.8. On the right, we plot uncertainties against GT GA, and find that
aleatoric uncertainty greater than epistemic uncertainty as a function of GA, where m
refers to the gradient of the best fit line.
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Fig. 5. An overview of kernel density estimates of the aleatoric and epistemic confidence
intervals (ci) for out of distribution datasets. Images enclosed in yellow are from the
dataset A test set, green from the external Dataset B imaging the same anatomy, and
purple from the dataset A(FL). Figure is best viewed digitally.

We empirically find that the images from the dataset B with higher image
contrast and a more visible CSP or midline have reduced predictive uncertainties
compared with images that do not. This is in line with the observation that the
images with i) clearly visible brain anatomical structures and ii) low GAs tend to
have lower predictive uncertainties in the test dataset A. The MSE and RMSE of
GA of images in Dataset B are 19.6 and 18.1 days respectively. However, this is
expected, as the ”ground truth” gestational ages for Dataset B were taken from
fetal growth charts using HC measurements, compared to the gold standard
LMP ground truth available in the Dataset A. A fetus with a HC-measurement
based GA of 24 weeks has a clinical 90% confidence interval of 1.4 weeks [21].

Evaluation on Dataset C Dataset C is a dataset where image acquisition
parameters are the same, but the images are of a different anatomy. We find that
the uncertainty estimates provide a useful metric which can potentially inform
the health professional that an invalid fetal plane is being used for regression.
This may not be as obvious or possible with traditional GA estimation methods,
which will predict a gestational age no matter the validity of the input image.

4 Conclusion

In this paper, we have described a Bayesian Neural Network framework with
calibrated uncertainties to directly predict gestational age from a T'T plane image
across a wide range of GA. This was done without knowledge of pixel size.
The best performing network achieved a RMSE of 9.6 days across the entire
gestational age range. We demonstrated that the biased predictive uncertainties
from variational inference can be calibrated, and are useful to detect images
that are not within the network’s training. This is potentially a useful feature to
prevent the model from being used out of the intended in a real world setting.
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