Skip to main content

Deep Learning Spatial Compounding from Multiple Fetal Head Ultrasound Acquisitions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12437))

Abstract

3D ultrasound systems have been widely used for fetal brain structures’ analysis. However, the obtained images present several artifacts such as multiplicative noise and acoustic shadows appearing as a function of acquisition angle. The purpose of this research is to merge several partially occluded ultrasound volumes, acquired by placing the transducer at different projections of the fetal head, to compound a new US volume containing the whole brain anatomy. To achieve this, the proposed methodology consists on the pipeline of four convolutional neural networks (CNN). Two CNNs are used to carry out fetal skull segmentations, by incorporating an incidence angle map and the segmented structures are then described with a Gaussian mixture model (GMM). For multiple US volumes registration, a feature set, based on distance maps computed from the GMM centroids is proposed. The third CNN learns the relation between distance maps of the volumes to be registered and estimates optimal rotation and translation parameters. Finally, the weighted root mean square is proposed as composition operator and weighting factors are estimated with the last CNN, which assigns a higher weight to those regions containing brain tissue and less ponderation to acoustic shadowed areas. The procedure was qualitatively and quantitatively validated in a set of fetal volumes obtained during gestation’s second trimester. Results show registration errors of 1.31 ± 0.2 mm and an increase of image sharpness of 34.9% compared to a single acquisition and of 25.2% compared to root mean square compounding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  2. Cen, F., Jiang, Y., Zhang, Z., Tsui, H.T., Lau, T.K., Xie, H.: Robust registration of 3-D ultrasound images based on Gabor filter and mean-shift method. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA - 2004. LNCS, vol. 3117, pp. 304–316. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27816-0_26

    Chapter  Google Scholar 

  3. Cen, F., Jiang, Y., Zhang, Z., Tsui, H.T.: Shape and pixel-property based automatic affine registration between ultrasound images of different fetal head. In: Yang, G.-Z., Jiang, T.-Z. (eds.) MIAR 2004. LNCS, vol. 3150, pp. 261–269. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28626-4_32

    Chapter  Google Scholar 

  4. Cerrolaza, J.J., et al.: Deep learning with ultrasound physics for fetal skull segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 564–567, April 2018. https://doi.org/10.1109/ISBI.2018.8363639

  5. Chen, H.C., et al.: Registration-based segmentation of three-dimensional ultrasound images for quantitative measurement of fetal craniofacial structure. Ultrasound Med. Biol. 38(5), 811–823 (2012)

    Article  Google Scholar 

  6. Contreras Ortiz, S.H., Chiu, T., Fox, M.D.: Ultrasound image enhancement: a review. Biomed. Signal Process. Control 7(5), 419–428 (2012)

    Article  Google Scholar 

  7. Gooding, M.J., Rajpoot, K., Mitchell, S., Chamberlain, P., Kennedy, S.H., Noble, J.A.: Investigation into the fusion of multiple 4-D fetal echocardiography images to improve image quality. Ultrasound Med. Biol. 36(6), 957–966 (2010)

    Article  Google Scholar 

  8. Modat, M., et al.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 1–6 (2014)

    Article  Google Scholar 

  9. Perez-Gonzalez, J., Arámbula Cosío, F., Huegel, J., Medina-Bañuelos, V.: Probabilistic learning coherent point drift for 3D ultrasound fetal head registration. Comput. Math. Methods Med. 2020 (2020). https://doi.org/10.1155/2020/4271519

  10. Perez-Gonzalez, J.L., Arámbula Cosío, F., Medina-Bañuelos, V.: Spatial composition of US images using probabilistic weighted means. In: 11th International Symposium on Medical Information Processing and Analysis, International Society for Optics and Photonics, SPIE, vol. 9681, pp. 288–294 (2015). https://doi.org/10.1117/12.2207958

  11. Perez-Gonzalez, J., et al.: Spatial compounding of 3-D fetal brain ultrasound using probabilistic maps. Ultrasound Med. Biol. 44(1), 278–291 (2018). https://doi.org/10.1016/j.ultrasmedbio.2017.09.001

    Article  Google Scholar 

  12. Rajpoot, K., Grau, V., Noble, J.A., Szmigielski, C., Becher, H.: Multiview fusion 3-d echocardiography: improving the information and quality of real-time 3-D echocardiography. Ultrasound Med. Biol. 37(7), 1056–1072 (2011)

    Article  Google Scholar 

  13. Rohling, R., Gee, A., Berman, L.: Three-dimensional spatial compounding of ultrasound images. Med. Image Anal. 1(3), 177–193 (1997)

    Article  Google Scholar 

  14. Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 564–567, April 2019. https://doi.org/10.1109/ISBI.2018.8363639

  15. Wilhjelm, J., Jensen, M., Jespersen, S., Sahl, B., Falk, E.: Visual and quantitative evaluation of selected image combination schemes in ultrasound spatial compound scanning. IEEE Trans. Med. Imaging 23(2), 181–190 (2004)

    Article  Google Scholar 

  16. Wright, R., et al.: Complete fetal head compounding from multi-view 3D ultrasound. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 384–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_43

    Chapter  Google Scholar 

Download references

Acknowledgment

This work was supported by UNAM–PAPIIT IA102920 and IT100220. The authors also acknowledge the National Institute of Perinatology of Mexico (INPer) for sharing the Ultrasound images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Perez-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perez-Gonzalez, J., Hevia Montiel, N., Bañuelos, V.M. (2020). Deep Learning Spatial Compounding from Multiple Fetal Head Ultrasound Acquisitions. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics