Skip to main content

On the Problems of SLAM Simulation for Mobile Robots in the Arctic Conditions

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2020)

Abstract

Autonomous robots in the Arctic cover a number of strategically important tasks, including climate research, reconnaissance, transportation, material delivery, search and rescue. These goals require adapting standard navigation, localization and mapping algorithms to the harsh Arctic conditions, which do not allow their straightforward usage. The paper describes main problems of using simultaneous localization and mapping (SLAM) algorithms in the Arctic region and formulate requirements for the Arctic landscape simulator. With regard to these requirements we constructed Arctic terrains in Gazebo simulator, which implemented three of the eight proposed Arctic features, and studied behavior of ROS implementations of GMapping, Hector SLAM, ORB-SLAM2 and RTAB-Map SLAM algorithms within the obtained terrains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The strategy for the development of the Arctic zone of the Russian Federation and national security up to 2020 (2013)

    Google Scholar 

  2. Frosty boy (2020). https://www.polarresearchequipment.com/specs

  3. GMapping (2020). https://openslam-org.github.io/gmapping.html

  4. ORB-SLAM2 - ROS Wiki (2020). http://wiki.ros.org/orb_slam2_ros

  5. Robots/Husky - ROS Wiki (2020). http://wiki.ros.org/Robots/Husky

  6. Robots/TurtleBot - ROS Wiki (2020). http://wiki.ros.org/Robots/TurtleBot

  7. Rtabmap - ROS Wiki (2020). http://wiki.ros.org/rtabmap/

  8. Alishev, N., Lavrenov, R., Hsia, K.H., Su, K.L., Magid, E.: Network failure detection and autonomous return algorithms for a crawler mobile robot navigation. In: 11th International Conference on Developments in eSystems Engineering (DeSE), pp. 169–174 (2018)

    Google Scholar 

  9. Abbyasov, B., Lavrenov, R., Zakiev, A., Magid, E.: Automatic tool for Gazebo world construction: from a grayscale image to a 3D solid model. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 7226–7232 (2020)

    Google Scholar 

  10. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (slam): Part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  11. Bokovoy, A., Yakovlev, K.: Enhancing semi-dense monocular VSLAM used for multi-rotor UAV navigation in indoor environment by fusing IMU data. In: International Conference on Artificial Life and Robotics (ICAROB), pp. 391–394 (2018)

    Google Scholar 

  12. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–8(6), 679–698 (1986)

    Article  Google Scholar 

  13. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  14. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. Trans. Robot. 23, 34–46 (2007)

    Article  Google Scholar 

  15. Grisettiyz, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Blackwellized particle filters by adaptive proposals and selective resampling. In: International Conference on Robotics and Automation, pp. 2432–2437 (2005)

    Google Scholar 

  16. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  17. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 155–160, November 2011

    Google Scholar 

  18. Labbé, M., Michaud, F.: RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019)

    Article  Google Scholar 

  19. Lavrenov, R., Zakiev, A., Magid, E.: Automatic mapping and filtering tool: from a sensor-based occupancy grid to a 3D Gazebo OCTOMAP. In: International Conference on Mechanical, System and Control Engineering (ICMSC), pp. 190–195 (2017)

    Google Scholar 

  20. Lavrenov, R., Matsuno, F., Magid, E.: Modified spline-based navigation: guaranteed safety for obstacle avoidance. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2017. LNCS (LNAI), vol. 10459, pp. 123–133. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66471-2_14

    Chapter  Google Scholar 

  21. Lever, J., Delaney, A., Ray, L., Trautmann, E., Barna, L.: Autonomous GPR surveys using the polar rover. J. Field Robot. 30, 194–215 (2013)

    Article  Google Scholar 

  22. Molchanov, V., Akimov, V., Sokolov, Y.: Risks of emergency situations in Arctic zone of Russian Federation. FGU VNII GOCHS, Moscow (2011)

    Google Scholar 

  23. Moskvin, I., Lavrenov, R.: Modeling tracks and controller for servosila engineer robot. In: Ronzhin, A., Shishlakov, V. (eds.) Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. SIST, vol. 154, pp. 411–422. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-9267-2_33

    Chapter  Google Scholar 

  24. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  25. Pashkin, A., Lavrenov, R., Zakiev, A., Svinin, M.: Pilot communication protocols for group of mobile robots in USAR scenarios. In: 12th International Conference on Developments in eSystems Engineering (DeSE), pp. 37–41 (2019)

    Google Scholar 

  26. Platonov, S., Buriak, T., Gorovoy, A., Bermishev, A., Lapshin, V.: Problems of navigation and high-precision positioning in Arctic and their solutions. Meas. World 7, 3–9 (2014)

    Google Scholar 

  27. Ray, L., et al.: Autonomous rover for polar science support and remote sensing. In: Geoscience and Remote Sensing Symposium, pp. 4101–4104 (2014)

    Google Scholar 

  28. Ray, L., Lever, J., Streeter, A., Price, A.: Design and power management of a solar-powered “Cool Robot” for polar instrument networks: Research articles. J. Field Robot. 24, 581–599 (2007)

    Article  Google Scholar 

  29. Remenson, V., Timofeev, V., Shabalin, P.: The synoptic analysis of the peculiarities of the impact of atmospheric processes and weather-climate conditions on the activity of the state in the Arctic zone. In: Proceedings of the A.F. Mozhaysky Military Space Academy, vol. 651, pp. 130–138 (2016)

    Google Scholar 

  30. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 1508–1515. Beijing, October 2005

    Google Scholar 

  31. Shadrin, B., Zachateyskiy, D., Dvoryanchikov, V.: Improving of data transferring effectiveness in communication systems operated in arctic regions. In: 4th International Conference on Radio Engineering, Electronics and Communication, pp. 98–105 (2017)

    Google Scholar 

  32. Simakov, N., Lavrenov, R., Zakiev, A., Safin, R., Martínez-García, E.A.: Modeling USAR maps for the collection of information on the state of the environment. In: 12th International Conference on Developments in eSystems Engineering (DeSE), pp. 918–923. IEEE (2019)

    Google Scholar 

  33. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9, 16 (2017)

    Article  Google Scholar 

  34. Williams, S.: Visual arctic navigation: techniques for autonomous agents in glacial environments (2011)

    Google Scholar 

  35. Zakiev, A., Tsoy, T., Magid, E.: Swarm robotics: remarks on terminology and classification. In: International Conference on Interactive Collaborative Robotics, pp. 291–300 (2018)

    Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Foundation for Basic Research (RFBR) according to the research project No. 19-58-70002. The sixth author acknowledges the support of the Japan Science and Technology Agency, the JST Strategic International Collaborative Research Program, Project No. 18065977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Chebotareva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chebotareva, E. et al. (2020). On the Problems of SLAM Simulation for Mobile Robots in the Arctic Conditions. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2020. Lecture Notes in Computer Science(), vol 12336. Springer, Cham. https://doi.org/10.1007/978-3-030-60337-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60337-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60336-6

  • Online ISBN: 978-3-030-60337-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics