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Abstract. Over the past decade, deep learning has become the gold
standard for automatic medical image segmentation. Every segmentation
task has an underlying uncertainty due to image resolution, annotation
protocol, etc. Therefore, a number of methods and metrics have been
proposed to quantify the uncertainty of neural networks mostly based
on Bayesian deep learning, ensemble learning methods or output prob-
ability calibration. The aim of our research is to assess how reliable the
different uncertainty metrics found in the literature are. We propose a
quantitative and statistical comparison of uncertainty measures based on
the relevance of the uncertainty map to predict misclassification. Four
uncertainty metrics were compared over a set of 144 models. The appli-
cation studied is the segmentation of the lumen and vessel wall of carotid
arteries based on multiple sequences of magnetic resonance (MR) images
in multi-center data.
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1 Introduction

Bayesian methods for neural networks [2,6,14] offer a mathematically grounded
framework to analyse uncertainties. Nonetheless, the early Bayesian networks
were computationally expensive to train, hard to implement and required more
storage than conventional ones. The work of Gal et al. [3] renewed the interest
in the field demonstrating the Bayesian properties of networks using dropout.
The fast uptake of this technique in the field can be mainly attributed to the
light alteration of the original model required.

The uncertainty estimation provided by Bayesian deep learning methods can
be considered in every downstream tasks such as biomarkers extraction, surgery
planning etc. Therefore, Bayesian techniques have known a rising interest in
medical imaging for classification [12], segmentation [15,22] and registration [18].

Little research focuses on comparing the quality of different uncertainties
metrics. A straightforward approach is to investigate the relationship between
different uncertainty metrics and inter-observer variability [1,4]. Alternatively,
in a classification problem, Van Molle et al. [22] introduces an uncertainty met-
ric based on distribution similarity of the two most probable classes. Authors
recommend the use of this uncertainty metric compared to variance based ones
since it is more interpretable. In another work, Mehrtash et al. [9] compares
calibrated and uncalibrated segmentation with negative log likelihood and Brier
score. Finally, Nair et al. [13] compared the gain in segmentation performance
when filtering out the most uncertain voxels for different uncertainty metrics.
However, none of these approaches compare uncertainty metrics for multi-class
segmentation which provide a larger spectrum of uncertainty measures.

To the best of our knowledge, this is the first work, in medical imaging,
that compares quantitatively and statistically the ability of different uncertainty
measures to predict misclassification in a multi-class segmentation context over
a large set of models with widely varying performance, including different vari-
ations of Monte-Carlo dropout (MC dropout) techniques.

2 Methods

2.1 MC Dropout

In the following, § € {2 represents the parameters of the model, fy the net-
work with parameters 6, (n,,n,,n.) € N* the dimensions of the input images,
M the number of input modalities, C' the number of output classes, (z,t) €
R7 X7y X1 XM Rna Xy X2 XC g pair input image = with ground truth label
image ¢, and j € J = {0,...,ny — 1} x {0,...,ny, — 1} x {0,...,n. — 1} a 3D
coordinate.

The different models used for carotid artery segmentation are based on the
MC dropout method [3]. To obtain several estimates of the multi-class segmen-
tation at test time, we sample T sets of parameters (01,...,07). From those
parameters, we can evaluate T outputs (f%(z),..., f7(z)) which represent a
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sample of the output distribution g(y|x). From this sample, one can derive the
mean and the covariance of output probabilities at a voxel level in Eq. 1.

E(q(y;|2)) T Zt L f] (@)
Var(q(y;|z) ~ Y1, fet ()" f]*(z) — Ea(y;|2)) "E(a(y;|z))

An alternative to the original (Bernoulli) dropout that applies binary mul-
tiplicative noise is to use Gaussian multiplicative noise [20]. To make the two
dropout methods comparable, one has to match the expected mean and the
variance of the dropout distributions as shown in the following Eq. 2.

B=M)A

ABernoulll ~ lpB(l - ) (2)
AGaueszan NN( sy 1— p)

22

(1)

where A is part of the feature maps of a dropout layer input, B is the corre-
sponding feature map of that dropout layer output, A € R is randomly sampled
from the dropout distribution, p is the dropout rate, B is a Bernoulli distribution
and A is a Gaussian distribution.

2.2 Uncertainty Metrics

Distribution Description. A conventional approach to estimate uncertainty
in a multi-class segmentation is to average the variance over classes [5,19]. In
practice, this is obtained, at a voxel level, averaging the diagonal elements of the
covariance matrix, Eq. 3.

wlalysle) = ZTVar(a(y; o) 3)

where u? is the averaged variance uncertainty metric and Tr is the trace of
the matrix.

Another widely used uncertainty metric for segmentation is the entropy [23].
In contrast with the variance metric which can be directly computed from data
sampled with MC dropout from the distribution ¢(y;|z), it requires the estima-
tion of an integral defined in Eq. 4.

(a5 12)) Z [ oy = oty =ty

where u" is the averaged entropy uncertainty metric, q.(y;|x) is the output
distribution of the class ¢ of the voxel j.

Distribution Similarity. Another option to define (voxelwise) classification
uncertainty, is to consider the overlap of the distributions of the two most proba-
ble classes for a given voxel. Van der Molle et al. [22] considered the Bhattacharya
coefficient, since it is interpretable (0: certain, 1: uncertain), Eq. 5.



Comparison of Uncertainty Measures 35

T1w pre-contrast Prediction Misclassification Averaged variance Averaged entropy BC KL

0.784

Dice

0.917 Dice = 0.861

Dice

Fig. 1. Example of the different uncertainty metrics. From left to right columns repre-
sent, the T1w pre-contrast MR image, the multi-class prediction (blue =background,
green = vessel wall, red =lumen, the level of brightness corresponds to the probability
of the predicted class), the misclassification map and the different uncertainty maps
(averaged variance, averaged entropy, BC, and KL). The rows correspond to predictions
with different networks and level of performances. The indicated Dice is the averaged
Dice over classes (Color figure online)

1
ub ixr)) = c j = 1|T)qc,\Yj = 1T
(a1 = | Va5 =t = tho)a (5)

where u® is the Bhattacharya coefficient based uncertainty metric (BC), ¢; and
co are the two top classes for voxel j.

Alternatively, Kullback-Leibler divergence provides another measure of dis-
tribution similarity. However, unlike the previous presented uncertainty mea-
sures, a high value represents a small overlap among distributions. Therefore,
the negative of the metric is considered. In addition, the Kullback-Leibler is
made symmetric with respect to the classes ¢; and cs, resulting in Eq. 6.

uF (q(y;12)) = —DrcLlge, (U512)]19e, (yi|2)] — Drcr e, (yi12) lge, (ys12)] — (6)

where u*! is the Kullback-Leibler based uncertainty metric (KL) and Dy,
is the Kullback-Leibler divergence.

The distribution ¢(y;|z) and g.(y;|z) of Eqgs. 3, 4, 5 and 6 are approximated
by the distribution of the 7" outputs (% (z), ..., f7 (z)). The integrals of Eqs. 4,
5 and 6 are estimated with a left Riemann sum with a discretisation of the
interval in npg,s.

2.3 Evaluation

Uncertainty Map Quality. To assess the quality of the uncertainty metrics,
we applied the framework developed by Mobiny et al. [11] to the different type
of uncertainty maps. The main idea is to consider uncertainty as a score that
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Table 1. Uncertainty as a predictor of misclassification

Uncertain (u(q(y;|z)) > th) | Certain (u(g(y;|z)) < th)
Misclassified TP(th) FN(th)
Correctly classified | F P(th) TN (th)

predicts misclassification. From the MC estimates and the ground-truth, one
can obtain a misclassification map m and an uncertainty map u (either u?,
u, u®, uFF) as described in Fig.2. Once an uncertainty map is thresholded
at a value th, one can define four types of voxels as summarized in Table 1:
misclassified and uncertain (True Positive (TP) in a sense that the uncertainty
of the voxel accurately predicts its misclassification), misclassified and certain
(False Negative (FN)), correctly classified and uncertain (False Positive (FP))
and correctly classified and certain (True Negative (TN)).

For a given value of the uncertainty threshold th, it is possible to compute the
precision and the recall of uncertainty as a misclassification predictor following:
Pr(th) = #% and Re(th) = %. By varying the threshold
over the range of the values of u, one can derive the area under the precision
recall curve (AUC-PR), Eq. 7.

1]
AUC-PR =Y Pr(u;).[Re(u;) — Re(uit1)] (7)

i=1

where u1 = u(q(Yp-1001)[7)) < vz = w(Wp-1002)|2)) < o < uy =
w(q(Yg—100(sp ) With ¢ : i, j,k — 1+ k + i.ng + j.ng.n, transforms 3D coor-
dinates into indices and o € &) is a permutation.

The main advantage of this metric is its independence from uncertainty map
scaling and distribution, as only the order of the voxels in the uncertainty map
matters. For this reason, AUC-PR provides a quantitative evaluation of the
uncertainty map quality that can reliably compare different uncertainty metrics.

Statistical Significance. To assess the statistical significance of our findings
a Bayesian point of view is adopted. One can estimate the posterior distribution
pa,p of the proportion of experiments where the uncertainty metric A has a
higher average of AUC-PR (Eq.7) over the test set than uncertainty metric
B (with metric A and metric B different). In a Bayesian fashion, we choose a
non-informative prior distribution of p4 p ~ Beta(1l,1) which corresponds to
a uniform distribution. Over the IV experiments, we observe k4 p experiments
where metric A gives a better estimate of misclassification than metric B. Then,
using Bayes rules, the posterior distribution is the following beta distribution,
pa,p ~ Beta(l+ka g, 1+ N —ka, p). From this Bayesian analysis, one can derive
Ig59, the 95% equally tailed credible interval of the parameter pa g, [7,8].
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3 Experiments

Dataset. We used carotid artery MR images acquired within the multi-center,
multi-scanner PARISK study [21], a large prospective study to improve risk
stratification in patient with mild to moderate carotid artery stenosis (<70%).
The standardized MR images acquisition protocol is described in Table2. We
used the images of all enrolled subjects (n = 145) at three of the four study centers
as these centers have used the same protocol resulting in a homogeneous set of
data: Amsterdam Medical Center (AMC), the Maastricht University Medical
Center (MUMC) and the University Medical Center of Utrecht (UMCU). The
dataset was split as followed 69 patients in the training set (all from MUMC),
24 patients in the validation set (all from MUMC) and 52 patients in the test
set (15 from MUMC, 24 from UMCU and 13 from AMC).

Table 2. MR images scan parameters (QIR=quadruple inversion recovery,
TSE = turbo spin echo, IR = inversion recovery, FFE = fast field echo and, TFE = turbo
field echo, FA =flip angle, AVS = acquired voxel size, RVS = reconstructed voxel size)

Pulse T1wQIR TSE TOF FFE |IR-TFE T2w TSE
sequence Pre-contrast | Post-contrast

Repetion time (ms) | 800 800 20 3.3 4800

Echo time (ms) 10 10 5 2.1 49
Inversion time (ms) |282,61 282,61 304

FA (degrees) 90 90 20 15 90

AVS (mm?) 0.62 x 0.67 |0.62 x 0.67 0.62 x 0.62 | 0.62 x 0.63 | 0.62 x 0.63
RVS (mm2) 0.30 x 0.30 |0.30 x 0.30 0.30 x 0.30 | 0.30 x 0.24 | 0.30 x 0.30
Slice thickness (mm) | 2 2 2 2 2

Input data

3D slice-wise pooling Unet

Monte-Carlo

estimate

Ground truth

16 x 128 x 128 x 16
P
; ¢ : l m |:|.H M’H’H’H - . ‘BG .
| 32x64x64x16 Dice
W = w
»D» }% »D»D M
64x32x32x 16
DQI:I’D—I:\:I?I:I’I:I s - (w .
:\Q:\Q
128 x 16 x 16 x 16
B 3x3x3 Conv + BatchNorm + RELU 1 2x2Maxpool AUC-PR )
— &
B 1xix1 Conv + Softmax 1 2x2 Upsampling v m
[ Features "7 Dropped out features Uncertainty map Misclossification

Fig. 2. Description of the network architecture and of the uncertainty map testing
framework. The dimensions corresponds to the number of feature maps and the size of
the feature maps
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MR sequences were semi-automatically affinely and elastically registered to
the T1w precontrast sequence. The vessel lumen and outer wall were annotated
manually slice-wise, by trained observers with 3 years of experience, in the T1lw
precontrast sequence. Registration and annotation were achieved with Vessel-
Mass software!. The intensity histogram was linearly scaled per image such that
the 5" % was set to 0 and the 95" % was set to 1. The networks were trained
and tested on a region of interest of 128 x 128 x 16 voxels covering one of the
common and internal carotid arteries per scan (either left or right).

Background Vessel Wall Lumen

20 { |u=0.987

10

0.97 0.98 0.99 1.00 . . . . . 0.0 0.2 0.4 0.6 0.8

Fig. 3. Distribution over the experiments of the average Dice coefficient, for each of
the three classes.

Averaged variance ° o o T o0
Averaged entropy ° o o o o ——f | }—— o000 o
LS ° -— 3
KL o T} °

0.1 0.2 0.3 0.4 0.5 0.6

Fig. 4. Distribution over the experiments of the average AUC-PR computed on the
test set. The whiskers represent the 5% and 95% interval.

Network Implementation. The networks used for our experiments are based
on a 3D U-net architecture [17] as shown in Fig. 2. Because of the low resolution
of our problem in the z-axis compared to the resolution on the x-and y-axis, we
apply 2D max-pooling and 2D up-sampling slice-wise instead of their usual 3D
alternatives. We trained the model using Adadelta optimizer [24] for 600 epochs
with training batches of size 1. The network was optimized with the Dice loss
[10]. As data augmentation, on the fly random flips along x axis were used. The
networks were implemented in Python using Pytorch [16], on a NVIDIA GeForce
2080 RTX GPU.

Parameters Under Study. We varied three parameters in our experiments:
the number of images in the training sample to analyse the robustness of the met-
rics to networks with different level of segmentation performances, the dropout
rate, and the dropout type to test different variations of MC dropout. Eight
values of number of images in the training set were used: 3, 5, 9, 15, 25, 30,
40 and 69 images. Also, nine dropout rates were used: 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and 0.9. Finally the two types of dropout (Bernoulli and Gaussian

! https://medisimaging.com/apps/vesselmass-re/.
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dropout) described in Sect.2 were considered. For every combination of those
three parameters, we trained a network following the procedure detailed in pre-
vious paragraph. At evaluation time, we discretized the integrals of Eqgs. 5, 4 and
6 in npins = 100 bins and we sampled T' = 50 times using MC dropout method.

Results. A visualization of the different uncertainty measures for different level
of performances can be found in Fig.1. One can find the distribution of the
average Dice per class in Fig. 3. The experiment with the highest averaged Dice
over classes was observed with a model trained with Gaussian dropout and a
dropout rate of 0.3 on the whole training set (69 samples). This method achieved
Dice scores of 0.994 on the background, 0.764 on the vessel wall and 0.885 on
the lumen. Figure4 shows the distribution over experiments of the AUC-PR
averaged over the test set for the four uncertainty metrics presented in this
article.

10%: Averaged variance, B: Averaged entropy A: Averaged variance, B: BC A: Averaged variance, B: KL
N=144 N=144 201 |[N=144
757 |kes=71 20 ka5 =140 ka5 =138
5.0/ |Pas=049 Pa,5=0.97 Pa,5=0.95
loss =[0.41,0.57] 10 loss =[0.93,0.99] 101 lo9s=[0.91,0.98]
25
0.0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
A: Averaged entropy, B: BC A: Averaged entropy, B: KL A: BC, B: KL
20
N=14a 20| (=144 1007 14z
151 ks=135 151 |kes=137 7.5] kag=104
10/ |Bas=093 Pa,5=0.95 Pa5=072
Ioss =[0.89,0.97] 101 |1os5=[0.9,0.98] 501 |loss=1064,079]
5 5 25
[ B ——— 0 —————— 00— (———— -
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Posterior distribution of pa,g for different metric pairs A and B, the red dashed
line represents the expected value if compared metrics perform equally and the blue
area under the curve represents the 95% credible interval

In our pairwise comparison of the four metrics, ten of the twelve combina-
tions of metrics under study showed statistically significant differences over the
144 experiments (I 95 does not contain 0.5). Due to the nature of the beta distri-
butions, the distribution of p,; and py , are symmetric with respect to y = 0.5
axis. Therefore, to avoid redundancy only half of the combinations of metric
analysis are reported in Fig. 5.

4 Discussion and Conclusion

We presented a quantitative analysis of four uncertainty metrics as predictors
of misclassification over a large set of MC dropout variations applied to multi-
class segmentation of carotid artery on MR images. This analysis which ranks
voxels based on their uncertainty does not take into account the calibration of
the different metrics. However, calibration can be performed easily for all metrics
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based on the validation set, without altering the rank of uncertainty values for
individual voxels [12].

Our results showed that metrics considering the statistical description of a
distribution averaged over classes performed significantly better than metrics
based on distribution similarity of the top two classes when it comes to predict
misclassification. Furthermore, BC performed better than KL. Those observa-
tions could be attributed to the over-confidence of the softmax output that tends
to polarize the distributions to their extreme values (0 or 1) and how sensitive are
the different metrics to this polarization. Therefore, in vessel segmentation, tak-
ing computation time and metrics performances into account, we advise the use
of the averaged variance which does not require the discretisation of an integral
voxel-wise. Finally, the good performances of the averaged variance and averaged
entropy are consistent with their extensive use in the literature [5,19,23].

Acknowledgments. This work was funded by Netherlands Organisation for Scientific
Research (NWO) VICI project VI.C.182.042. The PARISK study was funded within
the framework of CTMM, the Center for Translational Molecular Medicine, project
PARISK (grant 01C-202), and supported by the Dutch Heart Foundation.

References

1. Chotzoglou, E., Kainz, B.: Exploring the relationship between segmentation uncer-
tainty, segmentation performance and inter-observer variability with probabilis-
tic networks. In: Zhou, L., et al. (eds.) LABELS/HAL-MICCAI/CuRIOUS -2019.
LNCS, vol. 11851, pp. 51-60. Springer, Cham (2019). https://doi.org/10.1007 /978~
3-030-33642-4_6

2. Denker, J.S., LeCun, Y.: Transforming neural-net output levels to probability dis-
tributions. In: Advances in Neural Information Processing Systems, pp. 853-859
(1991)

3. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050-1059 (2016)

4. Jungo, A., et al.: On the effect of inter-observer variability for a reliable estimation
of uncertainty of medical image segmentation. In: Frangi, A.F., Schnabel, J.A.,
Davatzikos, C., Alberola-Lépez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS,
vol. 11070, pp. 682-690. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00928-1_77

5. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680 (2015)

6. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neu-
ral Comput. 4(3), 448-472 (1992)

7. Makowski, D., Ben-Shachar, M., Liidecke, D.: bayestestR: describing effects and
their uncertainty, existence and significance within the Bayesian framework. J.
Open Source Softw. 4(40), 1541 (2019)

8. McElreath, R.: Statistical Rethinking: A Bayesian Course with Examples in R and
Stan. CRC Press, Boca Raton (2020)


https://doi.org/10.1007/978-3-030-33642-4_6
https://doi.org/10.1007/978-3-030-33642-4_6
https://doi.org/10.1007/978-3-030-00928-1_77
https://doi.org/10.1007/978-3-030-00928-1_77
http://arxiv.org/abs/1511.02680

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Comparison of Uncertainty Measures 41

Mehrtash, A., Wells ITI, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Con-
fidence calibration and predictive uncertainty estimation for deep medical image
segmentation. arXiv preprint arXiv:1911.13273 (2019)

Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks
for volumetric medical image segmentation. In: 2016 Fourth International Confer-
ence on 3D Vision (3DV), pp. 565-571. IEEE (2016)

Mobiny, A., Nguyen, H.V., Moulik, S., Garg, N., Wu, C.C.: DropConnect is
effective in modeling uncertainty of Bayesian deep networks. arXiv preprint
arXiv:1906.04569 (2019)

Mobiny, A., Singh, A., Van Nguyen, H.: Risk-aware machine learning classifier for
skin lesion diagnosis. J. Clin. Med. 8(8), 1241 (2019)

Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in
deep networks for multiple sclerosis lesion detection and segmentation. Med. Image
Anal. 59, 101557 (2020)

Neal, R.M.: Bayesian learning via stochastic dynamics. In: Advances in Neural
Information Processing Systems, pp. 475-482 (1993)

Orlando, J.I., et al.: U2-Net: a Bayesian U-Net model with epistemic uncertainty
feedback for photoreceptor layer segmentation in pathological oct scans. In: 2019
IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1441—
1445. IEEE (2019)

Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8024-8035
(2019)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234-241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4_28

Sedghi, A., Kapur, T., Luo, J., Mousavi, P., Wells, W.M.: Probabilistic image
registration via deep multi-class classification: characterizing uncertainty. In:
Greenspan, H., et al. (eds.) CLIP/UNSURE -2019. LNCS, vol. 11840, pp. 12-22.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32689-0_2

Seebock, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for
anomaly detection in retinal OCT. IEEE Trans. Med. Imaging 39(1), 87-98 (2019)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Truijman, M., et al.: Plaque At RISK (PARISK): prospective multicenter study to
improve diagnosis of high-risk carotid plaques. Int. J. Stroke 9(6), 747-754 (2014)
Van Molle, P., et al.: Quantifying uncertainty of deep neural networks in skin
lesion classification. In: Greenspan, H., et al. (eds.) CLIP/UNSURE -2019. LNCS,
vol. 11840, pp. 52-61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32689-0-6

Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T.: Aleatoric
uncertainty estimation with test-time augmentation for medical image segmenta-
tion with convolutional neural networks. Neurocomputing 338, 34-45 (2019)
Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)


http://arxiv.org/abs/1911.13273
http://arxiv.org/abs/1906.04569
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-32689-0_2
https://doi.org/10.1007/978-3-030-32689-0_6
https://doi.org/10.1007/978-3-030-32689-0_6
http://arxiv.org/abs/1212.5701

	Quantitative Comparison of Monte-Carlo Dropout Uncertainty Measures for Multi-class Segmentation
	1 Introduction
	2 Methods
	2.1 MC Dropout
	2.2 Uncertainty Metrics
	2.3 Evaluation

	3 Experiments
	4 Discussion and Conclusion
	References




