Skip to main content

Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps

  • Conference paper
  • First Online:
Book cover Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (UNSURE 2020, GRAIL 2020)

Abstract

In landmark localization, due to ambiguities in defining their exact position, landmark annotations may suffer from both large inter- and intra-observer variabilites, which result in uncertain annotations. Therefore, predicting a single coordinate for a landmark is not sufficient for modeling the distribution of possible landmark locations. We propose to learn the Gaussian covariances of target heatmaps, such that covariances for pointed heatmaps correspond to more certain landmarks and covariances for flat heatmaps to more uncertain or ambiguous landmarks. By fitting Gaussian functions to the predicted heatmaps, our method is able to obtain landmark location distributions, which model location uncertainties. We show on a dataset of left hand radiographs and on a dataset of lateral cephalograms that the predicted uncertainties correlate with the landmark error, as well as inter-observer variabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beichel, R., Bischof, H., Leberl, F., Sonka, M.: Robust active appearance models and their application to medical image analysis. IEEE Trans. Med. Imaging 24(9), 1151–1169 (2005)

    Article  Google Scholar 

  2. Bier, B., et al.: Learning to detect anatomical landmarks of the pelvis in X-rays from arbitrary views. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1463–1473 (2019)

    Article  Google Scholar 

  3. Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chen, R., Ma, Y., Chen, N., Lee, D., Wang, W.: Cephalometric landmark detection by attentive feature pyramid fusion and regression-voting. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 873–881. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_97

    Chapter  Google Scholar 

  5. Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and accurate shape model fitting using random forest regression voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_21

    Chapter  Google Scholar 

  6. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  7. Gertych, A., Zhang, A., Sayre, J., Pospiech-Kurkowska, S., Huang, H.: Bone age assessment of children using a digital hand atlas. Comput. Med. Imaging Graph. 31(4–5), 322–331 (2007)

    Article  Google Scholar 

  8. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: XAI–explainable artificial intelligence. Sci. Robot. 4(37), eaay7120 (2019)

    Google Scholar 

  9. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  10. Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 33(4), 861–874 (2014)

    Article  Google Scholar 

  11. Johnson, H.J., Christensen, G.E.: Consistent landmark and intensity-based image registration. IEEE Trans. Med. Imaging 21(5), 450–461 (2002)

    Article  Google Scholar 

  12. Lindner, C., Bromiley, P.A., Ionita, M.C., Cootes, T.F.: Robust and accurate shape model matching using random forest regression-voting. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1862–1874 (2015)

    Article  Google Scholar 

  13. Lindner, C., Wang, C.W., Huang, C.T., Li, C.H., Chang, S.W., Cootes, T.F.: Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms. Sci. Rep. 6, 33581 (2016)

    Article  Google Scholar 

  14. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation. Med. Image Anal. 59, 101557 (2020)

    Article  Google Scholar 

  15. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  16. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  17. Tompson, J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2014)

    Google Scholar 

  18. Urschler, M., Ebner, T., Štern, D.: Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med. Image Anal. 43, 23–36 (2018)

    Article  Google Scholar 

  19. Urschler, M., Zach, C., Ditt, H., Bischof, H.: Automatic point landmark matching for regularizing nonlinear intensity registration: application to thoracic CT images. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 710–717. Springer, Heidelberg (2006). https://doi.org/10.1007/11866763_87

    Chapter  Google Scholar 

  20. Vrtovec, T., Pernuš, F., Likar, B.: A review of methods for quantitative evaluation of spinal curvature. Eur. Spine J. 18(5), 593–607 (2009)

    Article  Google Scholar 

  21. Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  22. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation. Front. Comput. Neurosci. 13, 56 (2019)

    Article  Google Scholar 

  23. Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty and interpretability in convolutional neural networks for semantic segmentation of colorectal polyps. Med. Image Anal. 60, 101619 (2020)

    Article  Google Scholar 

  24. Yang, D., et al.: Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 633–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_50

    Chapter  Google Scholar 

  25. Zhang, A., Sayre, J.W., Vachon, L., Liu, B.J., Huang, H.K.: Racial differences in growth patterns of children assessed on the basis of bone age. Radiology 250(1), 228–235 (2009)

    Article  Google Scholar 

  26. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_60

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Payer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6095 KB)

Supplementary material 2 (pdf 9422 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Payer, C., Urschler, M., Bischof, H., Štern, D. (2020). Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps. In: Sudre, C.H., et al. Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis. UNSURE GRAIL 2020 2020. Lecture Notes in Computer Science(), vol 12443. Springer, Cham. https://doi.org/10.1007/978-3-030-60365-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60365-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60364-9

  • Online ISBN: 978-3-030-60365-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics